These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25886858)

  • 1. Early and late effects of objecthood and spatial frequency on event-related potentials and gamma band activity.
    Craddock M; Martinovic J; Müller MM
    BMC Neurosci; 2015 Feb; 16():6. PubMed ID: 25886858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task and spatial frequency modulations of object processing: an EEG study.
    Craddock M; Martinovic J; Müller MM
    PLoS One; 2013; 8(7):e70293. PubMed ID: 23936181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking changes in spatial frequency sensitivity during natural image processing in school age: an event-related potential study.
    Rokszin AA; Győri-Dani D; Bácsi J; Nyúl LG; Csifcsák G
    J Exp Child Psychol; 2018 Feb; 166():664-678. PubMed ID: 29128609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological correlates of top-down effects facilitating natural image categorization are disrupted by the attenuation of low spatial frequency information.
    Rokszin AA; Győri-Dani D; Nyúl LG; Csifcsák G
    Int J Psychophysiol; 2016 Feb; 100():19-27. PubMed ID: 26707649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low spatial frequency filtering modulates early brain processing of affective complex pictures.
    Alorda C; Serrano-Pedraza I; Campos-Bueno JJ; Sierra-Vázquez V; Montoya P
    Neuropsychologia; 2007 Nov; 45(14):3223-33. PubMed ID: 17681356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased spatial frequency sensitivities for processing faces in male patients with chronic schizophrenia.
    Obayashi C; Nakashima T; Onitsuka T; Maekawa T; Hirano Y; Hirano S; Oribe N; Kaneko K; Kanba S; Tobimatsu S
    Clin Neurophysiol; 2009 Aug; 120(8):1525-33. PubMed ID: 19632149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of microsaccades by spatial frequency during object categorization.
    Craddock M; Oppermann F; Müller MM; Martinovic J
    Vision Res; 2017 Jan; 130():48-56. PubMed ID: 27876511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The highs and lows of object impossibility: effects of spatial frequency on holistic processing of impossible objects.
    Freud E; Avidan G; Ganel T
    Psychon Bull Rev; 2015 Feb; 22(1):297-306. PubMed ID: 24957536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced extrastriate visual response to bandpass spatial frequency filtered fearful faces: time course and topographic evoked-potentials mapping.
    Pourtois G; Dan ES; Grandjean D; Sander D; Vuilleumier P
    Hum Brain Mapp; 2005 Sep; 26(1):65-79. PubMed ID: 15954123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Neural mechanisms of face recognition: an event-related potential study].
    Tobimatsu S
    Brain Nerve; 2012 Jul; 64(7):717-26. PubMed ID: 22764343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-to-fine information integration in human vision.
    Petras K; Ten Oever S; Jacobs C; Goffaux V
    Neuroimage; 2019 Feb; 186():103-112. PubMed ID: 30403971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time course of spatial frequency integration in face perception: An ERP study.
    Jeantet C; Laprevote V; Schwan R; Schwitzer T; Maillard L; Lighezzolo-Alnot J; Caharel S
    Int J Psychophysiol; 2019 Sep; 143():105-115. PubMed ID: 31276696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study.
    Peyrin C; Baciu M; Segebarth C; Marendaz C
    Neuroimage; 2004 Oct; 23(2):698-707. PubMed ID: 15488419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early ERP components differentially extract facial features: evidence for spatial frequency-and-contrast detectors.
    Nakashima T; Kaneko K; Goto Y; Abe T; Mitsudo T; Ogata K; Makinouchi A; Tobimatsu S
    Neurosci Res; 2008 Dec; 62(4):225-35. PubMed ID: 18809442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition for attentional resources between low spatial frequency content of emotional images and a foreground task in early visual cortex.
    Müller MM; Gundlach C
    Psychophysiology; 2017 Mar; 54(3):429-443. PubMed ID: 27990660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERP evidence of a meaningfulness impact on visual global/local processing: when meaning captures attention.
    Beaucousin V; Cassotti M; Simon G; Pineau A; Kostova M; Houdé O; Poirel N
    Neuropsychologia; 2011 Apr; 49(5):1258-1266. PubMed ID: 21281654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Object recognition learning differentiates the representations of objects at the ERP component N1.
    Wang G; Suemitsu K
    Clin Neurophysiol; 2007 Feb; 118(2):372-80. PubMed ID: 17141565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similarity dependency of the change in ERP component N1 accompanying with the object recognition learning.
    Tokudome W; Wang G
    Int J Psychophysiol; 2012 Jan; 83(1):102-9. PubMed ID: 22115890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial frequency tuning of motor responses reveals differential contribution of dorsal and ventral systems to action comprehension.
    Amoruso L; Finisguerra A; Urgesi C
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):13151-13161. PubMed ID: 32457158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct preference for spatial frequency content in ventral stream regions underlying the recognition of scenes, faces, bodies and other objects.
    Canário N; Jorge L; Loureiro Silva MF; Alberto Soares M; Castelo-Branco M
    Neuropsychologia; 2016 Jul; 87():110-119. PubMed ID: 27180002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.