BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 25886978)

  • 1. Accurate prediction of RNA nucleotide interactions with backbone k-tree model.
    Ding L; Xue X; LaMarca S; Mohebbi M; Samad A; Malmberg RL; Cai L
    Bioinformatics; 2015 Aug; 31(16):2660-7. PubMed ID: 25886978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure.
    Reinharz V; Major F; WaldispĆ¼hl J
    Bioinformatics; 2012 Jun; 28(12):i207-14. PubMed ID: 22689763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNAfitme: a webserver for modeling nucleobase and nucleoside residue conformation in fixed-backbone RNA structures.
    Antczak M; Zok T; Osowiecki M; Popenda M; Adamiak RW; Szachniuk M
    BMC Bioinformatics; 2018 Aug; 19(1):304. PubMed ID: 30134831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of RNA 3D structure prediction using evolutionary restraints of nucleotide-nucleotide interactions from direct coupling analysis.
    Wang J; Mao K; Zhao Y; Zeng C; Xiang J; Zhang Y; Xiao Y
    Nucleic Acids Res; 2017 Jun; 45(11):6299-6309. PubMed ID: 28482022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GARN2: coarse-grained prediction of 3D structure of large RNA molecules by regret minimization.
    Boudard M; Barth D; Bernauer J; Denise A; Cohen J
    Bioinformatics; 2017 Aug; 33(16):2479-2486. PubMed ID: 28398456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conditional random fields method for RNA sequence-structure relationship modeling and conformation sampling.
    Wang Z; Xu J
    Bioinformatics; 2011 Jul; 27(13):i102-10. PubMed ID: 21685058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
    Sloma MF; Mathews DH
    PLoS Comput Biol; 2017 Nov; 13(11):e1005827. PubMed ID: 29107980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BiORSEO: a bi-objective method to predict RNA secondary structures with pseudoknots using RNA 3D modules.
    Becquey L; Angel E; Tahi F
    Bioinformatics; 2020 Apr; 36(8):2451-2457. PubMed ID: 31913439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iFoldRNA v2: folding RNA with constraints.
    Krokhotin A; Houlihan K; Dokholyan NV
    Bioinformatics; 2015 Sep; 31(17):2891-3. PubMed ID: 25910700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. aliFreeFold: an alignment-free approach to predict secondary structure from homologous RNA sequences.
    Glouzon JS; Ouangraoua A
    Bioinformatics; 2018 Jul; 34(13):i70-i78. PubMed ID: 29949960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA 3D structure prediction: (1) assessing rna 3D structure similarity from 2D structure similarity.
    Barreda D C JE; Shigenobu Y; Ichiishi E; Del Carpio M CA
    Genome Inform; 2004; 15(2):112-20. PubMed ID: 15706497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tree decomposition based fast search of RNA structures including pseudoknots in genomes.
    Song Y; Liu C; Malmberg R; Pan F; Cai L
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():223-34. PubMed ID: 16447980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AccessFold: predicting RNA-RNA interactions with consideration for competing self-structure.
    DiChiacchio L; Sloma MF; Mathews DH
    Bioinformatics; 2016 Apr; 32(7):1033-9. PubMed ID: 26589271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3dRPC: a web server for 3D RNA-protein structure prediction.
    Huang Y; Li H; Xiao Y
    Bioinformatics; 2018 Apr; 34(7):1238-1240. PubMed ID: 29186336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNAG: a new Gibbs sampler for predicting RNA secondary structure for unaligned sequences.
    Wei D; Alpert LV; Lawrence CE
    Bioinformatics; 2011 Sep; 27(18):2486-93. PubMed ID: 21788211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational prediction of riboswitch tertiary structures including pseudoknots by RAGTOP: a hierarchical graph sampling approach.
    Kim N; Zahran M; Schlick T
    Methods Enzymol; 2015; 553():115-35. PubMed ID: 25726463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding stable local optimal RNA secondary structures.
    Li Y; Zhang S
    Bioinformatics; 2011 Nov; 27(21):2994-3001. PubMed ID: 21903624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation.
    Li Y; Shi X; Liang Y; Xie J; Zhang Y; Ma Q
    BMC Bioinformatics; 2017 Jan; 18(1):51. PubMed ID: 28109252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting pseudoknotted structures across two RNA sequences.
    Sperschneider J; Datta A; Wise MJ
    Bioinformatics; 2012 Dec; 28(23):3058-65. PubMed ID: 23044552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.