These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25887219)

  • 1. Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat.
    Stein CK; Qu P; Epstein J; Buros A; Rosenthal A; Crowley J; Morgan G; Barlogie B
    BMC Bioinformatics; 2015 Feb; 16():63. PubMed ID: 25887219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blind estimation and correction of microarray batch effect.
    Varma S
    PLoS One; 2020; 15(4):e0231446. PubMed ID: 32271844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods.
    Chen C; Grennan K; Badner J; Zhang D; Gershon E; Jin L; Liu C
    PLoS One; 2011 Feb; 6(2):e17238. PubMed ID: 21386892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data.
    Müller C; Schillert A; Röthemeier C; Trégouët DA; Proust C; Binder H; Pfeiffer N; Beutel M; Lackner KJ; Schnabel RB; Tiret L; Wild PS; Blankenberg S; Zeller T; Ziegler A
    PLoS One; 2016; 11(6):e0156594. PubMed ID: 27272489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Batch effect reduction of microarray data with dependent samples using an empirical Bayes approach (BRIDGE).
    Xia Q; Thompson JA; Koestler DC
    Stat Appl Genet Mol Biol; 2021 Dec; 20(4-6):101-119. PubMed ID: 34905304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covariance adjustment for batch effect in gene expression data.
    Lee JA; Dobbin KK; Ahn J
    Stat Med; 2014 Jul; 33(15):2681-95. PubMed ID: 24687561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses.
    Nygaard V; Rødland EA; Hovig E
    Biostatistics; 2016 Jan; 17(1):29-39. PubMed ID: 26272994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propensity scores as a novel method to guide sample allocation and minimize batch effects during the design of high throughput experiments.
    Carry PM; Vigers T; Vanderlinden LA; Keeter C; Dong F; Buckner T; Litkowski E; Yang I; Norris JM; Kechris K
    BMC Bioinformatics; 2023 Mar; 24(1):86. PubMed ID: 36882691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of statistical methods and the use of quality control samples for batch effect correction in human transcriptome data.
    Espín-Pérez A; Portier C; Chadeau-Hyam M; van Veldhoven K; Kleinjans JCS; de Kok TMCM
    PLoS One; 2018; 13(8):e0202947. PubMed ID: 30161168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjusting batch effects in microarray expression data using empirical Bayes methods.
    Johnson WE; Li C; Rabinovic A
    Biostatistics; 2007 Jan; 8(1):118-27. PubMed ID: 16632515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The practical effect of batch on genomic prediction.
    Parker HS; Leek JT
    Stat Appl Genet Mol Biol; 2012; 11(3):Article 10. PubMed ID: 22611599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression profiling in multiple myeloma--reporting of entities, risk, and targets in clinical routine.
    Meissner T; Seckinger A; Rème T; Hielscher T; Möhler T; Neben K; Goldschmidt H; Klein B; Hose D
    Clin Cancer Res; 2011 Dec; 17(23):7240-7. PubMed ID: 21986844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical development and evaluation of microarray gene expression data filters.
    Pounds S; Cheng C
    J Comput Biol; 2005 May; 12(4):482-95. PubMed ID: 15882143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data.
    Luo J; Schumacher M; Scherer A; Sanoudou D; Megherbi D; Davison T; Shi T; Tong W; Shi L; Hong H; Zhao C; Elloumi F; Shi W; Thomas R; Lin S; Tillinghast G; Liu G; Zhou Y; Herman D; Li Y; Deng Y; Fang H; Bushel P; Woods M; Zhang J
    Pharmacogenomics J; 2010 Aug; 10(4):278-91. PubMed ID: 20676067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical methods for analyzing microarray feature data with replications.
    Yang Y; Hoh J; Broger C; Neeb M; Edington J; Lindpaintner K; Ott J
    J Comput Biol; 2003; 10(2):157-69. PubMed ID: 12804089
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zhang Y; Parmigiani G; Johnson WE
    NAR Genom Bioinform; 2020 Sep; 2(3):lqaa078. PubMed ID: 33015620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stratified randomization controls better for batch effects in 450K methylation analysis: a cautionary tale.
    Buhule OD; Minster RL; Hawley NL; Medvedovic M; Sun G; Viali S; Deka R; McGarvey ST; Weeks DE
    Front Genet; 2014; 5():354. PubMed ID: 25352862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BatMan: Mitigating Batch Effects Via Stratification for Survival Outcome Prediction.
    Ni A; Liu M; Qin LX
    JCO Clin Cancer Inform; 2023 Jun; 7():e2200138. PubMed ID: 37335961
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.