These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 25887244)
21. Antibacterial abietane-type diterpenoid, taxodone from Metasequoia glyptostroboides Miki ex Hu. Bajpai VK; Kang SC J Biosci; 2010 Dec; 35(4):533-8. PubMed ID: 21289435 [TBL] [Abstract][Full Text] [Related]
22. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Rasouli H; Hosseini-Ghazvini SM; Adibi H; Khodarahmi R Food Funct; 2017 May; 8(5):1942-1954. PubMed ID: 28470323 [TBL] [Abstract][Full Text] [Related]
23. Sesquiterpenoids and 2-(2-phenylethyl)chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. Yang L; Yang YL; Dong WH; Li W; Wang P; Cao X; Yuan JZ; Chen HQ; Mei WL; Dai HF J Enzyme Inhib Med Chem; 2019 Dec; 34(1):853-862. PubMed ID: 31010356 [TBL] [Abstract][Full Text] [Related]
24. Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B. Ali MY; Jannat S; Jung HA; Jeong HO; Chung HY; Choi JS Chem Biol Interact; 2016 May; 252():93-101. PubMed ID: 27085377 [TBL] [Abstract][Full Text] [Related]
25. The Antioxidant Properties, Tyrosinase and α-Glucosidase Inhibitory Activities of Phenolic Compounds in Different Extracts from the Golden Oyster Mushroom, Pleurotus citrinopileatus (Agaricomycetes). Yin C; Fan X; Liu C; Fan Z; Shi D; Yao F; Cheng W; Gao H Int J Med Mushrooms; 2019; 21(9):865-874. PubMed ID: 32450026 [TBL] [Abstract][Full Text] [Related]
26. α-Glucosidase and α-amylase inhibitors from Myrcia spp.: a stronger alternative to acarbose? Figueiredo-González M; Grosso C; Valentão P; Andrade PB J Pharm Biomed Anal; 2016 Jan; 118():322-327. PubMed ID: 26590699 [TBL] [Abstract][Full Text] [Related]
27. A new glucoside with a potent α-glucosidase inhibitory activity from Elbermawi A; Halim AF; Mansour ES; Ahmad KF; Ashour A; Amen Y; Shimizu K Nat Prod Res; 2021 Mar; 35(6):976-983. PubMed ID: 31140302 [TBL] [Abstract][Full Text] [Related]
28. A new ester of fatty acid from a methanol extract of the whole plant of Amaranthus spinosus and its α-glucosidase inhibitory activity. Mondal A; Guria T; Maity TK Pharm Biol; 2015 Apr; 53(4):600-4. PubMed ID: 25339411 [TBL] [Abstract][Full Text] [Related]
29. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of Veronica persica phenolic-rich extracts. Sharifi-Rad M; Tayeboon GS; Sharifi-Rad J; Iriti M; Varoni EM; Razazi S Cell Mol Biol (Noisy-le-grand); 2016 May; 62(6):80-5. PubMed ID: 27262808 [TBL] [Abstract][Full Text] [Related]
30. α-Glucosidase and α-Amylase Inhibitors from Arcytophyllum thymifolium. Milella L; Milazzo S; De Leo M; Vera Saltos MB; Faraone I; Tuccinardi T; Lapillo M; De Tommasi N; Braca A J Nat Prod; 2016 Aug; 79(8):2104-12. PubMed ID: 27509358 [TBL] [Abstract][Full Text] [Related]
31. Kinetics of α-glucosidase inhibition by different fractions of three species of Labiatae extracts: a new diabetes treatment model. Rouzbehan S; Moein S; Homaei A; Moein MR Pharm Biol; 2017 Dec; 55(1):1483-1488. PubMed ID: 28367665 [TBL] [Abstract][Full Text] [Related]
32. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]
33. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. McCue P; Kwon YI; Shetty K Asia Pac J Clin Nutr; 2005; 14(2):145-52. PubMed ID: 15927931 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of Total Flavonoids, Myricetin, and Quercetin from Hovenia dulcis Thunb. As Inhibitors of α-Amylase and α-Glucosidase. Meng Y; Su A; Yuan S; Zhao H; Tan S; Hu C; Deng H; Guo Y Plant Foods Hum Nutr; 2016 Dec; 71(4):444-449. PubMed ID: 27787697 [TBL] [Abstract][Full Text] [Related]
36. Characterization and pharmacological potential of Lactobacillus sakei 1I1 isolated from fresh water fish Zacco koreanus. Bajpai VK; Han JH; Nam GJ; Majumder R; Park C; Lim J; Paek WK; Rather IA; Park YH Daru; 2016 Mar; 24():8. PubMed ID: 26980217 [TBL] [Abstract][Full Text] [Related]
37. Relationships between degree of polymerization and activities: A study on condensed tannins from the bark of Ficus altissima. Chai W; Wu Y; Li X; Zeng S; Cheng Y; Jiang W; Pan Q; Xia X; Chen G Int J Biol Macromol; 2024 Aug; 274(Pt 1):133306. PubMed ID: 38909729 [TBL] [Abstract][Full Text] [Related]
38. Anti-hyperglycemic Potential of Natural Products. Matsui T; Ogunwande IA; Abesundara KJ; Matsumoto K Mini Rev Med Chem; 2006 Mar; 6(3):349-56. PubMed ID: 16515474 [TBL] [Abstract][Full Text] [Related]
39. Boerhaavia diffusa inhibits key enzymes linked to type 2 diabetes in vitro and in silico; and modulates abdominal glucose absorption and muscle glucose uptake ex vivo. Oyebode OA; Erukainure OL; Chukwuma CI; Ibeji CU; Koorbanally NA; Islam S Biomed Pharmacother; 2018 Oct; 106():1116-1125. PubMed ID: 30119178 [TBL] [Abstract][Full Text] [Related]