BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 25887532)

  • 1. Global liver gene expression differences in Nelore steers with divergent residual feed intake phenotypes.
    Tizioto PC; Coutinho LL; Decker JE; Schnabel RD; Rosa KO; Oliveira PS; Souza MM; Mourão GB; Tullio RR; Chaves AS; Lanna DP; Zerlotini-Neto A; Mudadu MA; Taylor JF; Regitano LC
    BMC Genomics; 2015 Mar; 16(1):242. PubMed ID: 25887532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression differences in Longissimus muscle of Nelore steers genetically divergent for residual feed intake.
    Tizioto PC; Coutinho LL; Oliveira PS; Cesar AS; Diniz WJ; Lima AO; Rocha MI; Decker JE; Schnabel RD; Mourão GB; Tullio RR; Zerlotini A; Taylor JF; Regitano LC
    Sci Rep; 2016 Dec; 6():39493. PubMed ID: 28004777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake.
    Kong RS; Liang G; Chen Y; Stothard P; Guan le L
    BMC Genomics; 2016 Aug; 17():592. PubMed ID: 27506548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liver transcriptome profiling of beef steers with divergent growth rate, feed intake, or metabolic body weight phenotypes1.
    Mukiibi R; Vinsky M; Keogh K; Fitzsimmons C; Stothard P; Waters SM; Li C
    J Anim Sci; 2019 Nov; 97(11):4386-4404. PubMed ID: 31583405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual feed intake studies in Angus-sired cattle reveal a potential role for hypothalamic gene expression in regulating feed efficiency.
    Perkins SD; Key CN; Garrett CF; Foradori CD; Bratcher CL; Kriese-Anderson LA; Brandebourg TD
    J Anim Sci; 2014 Feb; 92(2):549-60. PubMed ID: 24398827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of breed and diet type on the global transcriptome of hepatic tissue in beef cattle divergent for feed efficiency.
    Higgins MG; Kenny DA; Fitzsimons C; Blackshields G; Coyle S; McKenna C; McGee M; Morris DW; Waters SM
    BMC Genomics; 2019 Jun; 20(1):525. PubMed ID: 31242854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle.
    Salleh MS; Mazzoni G; Höglund JK; Olijhoek DW; Lund P; Løvendahl P; Kadarmideen HN
    BMC Genomics; 2017 Mar; 18(1):258. PubMed ID: 28340555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake.
    Chen Y; Gondro C; Quinn K; Herd RM; Parnell PF; Vanselow B
    Anim Genet; 2011 Oct; 42(5):475-90. PubMed ID: 21906099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrative transcriptome analysis indicates regulatory mRNA-miRNA networks for residual feed intake in Nelore cattle.
    De Oliveira PSN; Coutinho LL; Tizioto PC; Cesar ASM; de Oliveira GB; Diniz WJDS; De Lima AO; Reecy JM; Mourão GB; Zerlotini A; Regitano LCA
    Sci Rep; 2018 Nov; 8(1):17072. PubMed ID: 30459456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-Seq Meta-analysis identifies genes in skeletal muscle associated with gain and intake across a multi-season study of crossbred beef steers.
    Keel BN; Zarek CM; Keele JW; Kuehn LA; Snelling WM; Oliver WT; Freetly HC; Lindholm-Perry AK
    BMC Genomics; 2018 Jun; 19(1):430. PubMed ID: 29866053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene co-expression networks from RNA sequencing of dairy cattle identifies genes and pathways affecting feed efficiency.
    Salleh SM; Mazzoni G; Løvendahl P; Kadarmideen HN
    BMC Bioinformatics; 2018 Dec; 19(1):513. PubMed ID: 30558534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential gene expression in the duodenum, jejunum and ileum among crossbred beef steers with divergent gain and feed intake phenotypes.
    Lindholm-Perry AK; Butler AR; Kern RJ; Hill R; Kuehn LA; Wells JE; Oliver WT; Hales KE; Foote AP; Freetly HC
    Anim Genet; 2016 Aug; 47(4):408-27. PubMed ID: 27226174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial protein gene expression and the oxidative phosphorylation pathway associated with feed efficiency and energy balance in dairy cattle.
    Dorji J; MacLeod IM; Chamberlain AJ; Vander Jagt CJ; Ho PN; Khansefid M; Mason BA; Prowse-Wilkins CP; Marett LC; Wales WJ; Cocks BG; Pryce JE; Daetwyler HD
    J Dairy Sci; 2021 Jan; 104(1):575-587. PubMed ID: 33162069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic potential for residual feed intake and diet fed during early- to mid-gestation influences post-natal DNA methylation of imprinted genes in muscle and liver tissues in beef cattle.
    Devos J; Behrouzi A; Paradis F; Straathof C; Li C; Colazo M; Block H; Fitzsimmons C
    J Anim Sci; 2021 May; 99(5):. PubMed ID: 33991189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat-type chickens.
    Lee J; Karnuah AB; Rekaya R; Anthony NB; Aggrey SE
    Mol Genet Genomics; 2015 Oct; 290(5):1673-82. PubMed ID: 25782841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of residual feed intake on hypothalamic gene expression and meat quality in Angus-sired cattle grown during the hot season.
    Perkins SD; Key CN; Marvin MN; Garrett CF; Foradori CD; Bratcher CL; Kriese-Anderson LA; Brandebourg TD
    J Anim Sci; 2014 Apr; 92(4):1451-61. PubMed ID: 24663166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle.
    Cantalapiedra-Hijar G; Abo-Ismail M; Carstens GE; Guan LL; Hegarty R; Kenny DA; McGee M; Plastow G; Relling A; Ortigues-Marty I
    Animal; 2018 Dec; 12(s2):s321-s335. PubMed ID: 30139392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome differences in the rumen of beef steers with variation in feed intake and gain.
    Kern RJ; Lindholm-Perry AK; Freetly HC; Snelling WM; Kern JW; Keele JW; Miles JR; Foote AP; Oliver WT; Kuehn LA; Ludden PA
    Gene; 2016 Jul; 586(1):12-26. PubMed ID: 27033587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression analysis of blood, liver, and muscle in cattle divergently selected for high and low residual feed intake.
    Khansefid M; Millen CA; Chen Y; Pryce JE; Chamberlain AJ; Vander Jagt CJ; Gondro C; Goddard ME
    J Anim Sci; 2017 Nov; 95(11):4764-4775. PubMed ID: 29293712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between the genes expressed in the mesenteric adipose tissue of beef cattle and feed intake and gain.
    Lindholm-Perry AK; Cunningham HC; Kuehn LA; Vallet JL; Keele JW; Foote AP; Cammack KM; Freetly HC
    Anim Genet; 2017 Aug; 48(4):386-394. PubMed ID: 28568315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.