These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 25887636)
1. Interspecies quantitative structure-activity-activity relationships (QSAARs) for prediction of acute aquatic toxicity of aromatic amines and phenols. Furuhama A; Hasunuma K; Aoki Y SAR QSAR Environ Res; 2015; 26(4):301-23. PubMed ID: 25887636 [TBL] [Abstract][Full Text] [Related]
2. Interspecies quantitative structure-activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties. Furuhama A; Hasunuma K; Aoki Y SAR QSAR Environ Res; 2015; 26(10):809-30. PubMed ID: 26540445 [TBL] [Abstract][Full Text] [Related]
3. Development of models to predict fish early-life stage toxicity from acute Daphnia magna toxicity Furuhama A; Hayashi TI; Yamamoto H SAR QSAR Environ Res; 2018 Sep; 29(9):725-742. PubMed ID: 30182748 [TBL] [Abstract][Full Text] [Related]
4. External validation of acute-to-chronic models for estimation of reproductive toxicity to Daphnia magna. Furuhama A; Hayashi TI; Yamamoto H; Tatarazako N SAR QSAR Environ Res; 2017 Sep; 28(9):765-781. PubMed ID: 29022371 [TBL] [Abstract][Full Text] [Related]
5. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology. Singh KP; Gupta S; Kumar A; Mohan D Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471 [TBL] [Abstract][Full Text] [Related]
6. Preliminary studies on model development for rodent toxicity and its interspecies correlation with aquatic toxicities of pharmaceuticals. Das RN; Sanderson H; Mwambo AE; Roy K Bull Environ Contam Toxicol; 2013 Mar; 90(3):375-81. PubMed ID: 23238824 [TBL] [Abstract][Full Text] [Related]
7. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio. Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559 [TBL] [Abstract][Full Text] [Related]
8. Modelling quantitative structure activity-activity relationships (QSAARs): auto-pass-pass, a new approach to fill data gaps in environmental risk assessment under the REACH regulation. Bouhedjar K; Benfenati E; Nacereddine AK SAR QSAR Environ Res; 2020 Oct; 31(10):785-801. PubMed ID: 32878491 [TBL] [Abstract][Full Text] [Related]
9. Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling. Cassani S; Kovarich S; Papa E; Roy PP; van der Wal L; Gramatica P J Hazard Mater; 2013 Aug; 258-259():50-60. PubMed ID: 23702385 [TBL] [Abstract][Full Text] [Related]
10. Development of QSAAR and QAAR models for predicting fish early-life stage toxicity with a focus on industrial chemicals. Furuhama A; Hayashi TI; Yamamoto H SAR QSAR Environ Res; 2019 Nov; 30(11):825-846. PubMed ID: 31607178 [TBL] [Abstract][Full Text] [Related]
11. Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties. Furuhama A; Hasunuma K; Hayashi TI; Tatarazako N SAR QSAR Environ Res; 2016 May; 27(5):343-62. PubMed ID: 27171903 [TBL] [Abstract][Full Text] [Related]
12. Exploring an ecotoxicity database with the OECD (Q)SAR Toolbox and DRAGON descriptors in order to prioritise testing on algae, daphnids, and fish. Tebby C; Mombelli E; Pandard P; Péry AR Sci Total Environ; 2011 Aug; 409(18):3334-43. PubMed ID: 21684579 [TBL] [Abstract][Full Text] [Related]
13. Aquatic toxicity and ecological risk assessment of seven parabens: Individual and additive approach. Yamamoto H; Tamura I; Hirata Y; Kato J; Kagota K; Katsuki S; Yamamoto A; Kagami Y; Tatarazako N Sci Total Environ; 2011 Dec; 410-411():102-11. PubMed ID: 22051549 [TBL] [Abstract][Full Text] [Related]
14. Predicting the toxicity of substituted phenols to aquatic species and its changes in the stream and effluent waters. Lee YG; Hwang SH; Kim SD Arch Environ Contam Toxicol; 2006 Feb; 50(2):213-9. PubMed ID: 16392020 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of four QSAR models of aromatic compounds to aquatic organisms. Yu RL; Hu GR; Zhao YH J Environ Sci (China); 2002 Oct; 14(4):552-7. PubMed ID: 12491732 [TBL] [Abstract][Full Text] [Related]
16. Aquatic multi-species acute toxicity of (chlorinated) anilines: experimental versus predicted data. Dom N; Knapen D; Benoot D; Nobels I; Blust R Chemosphere; 2010 Sep; 81(2):177-86. PubMed ID: 20637490 [TBL] [Abstract][Full Text] [Related]
17. ECOSAR model performance with a large test set of industrial chemicals. Reuschenbach P; Silvani M; Dammann M; Warnecke D; Knacker T Chemosphere; 2008 May; 71(10):1986-95. PubMed ID: 18262586 [TBL] [Abstract][Full Text] [Related]
18. Assessment of aquatic experimental versus predicted and extrapolated chronic toxicity data of four structural analogues. Dom N; Knapen D; Blust R Chemosphere; 2012 Jan; 86(1):56-64. PubMed ID: 21944038 [TBL] [Abstract][Full Text] [Related]
19. Quantitative structure-activity relationship for prediction of the toxicity of phenols on Photobacterium phosphoreum. Li X; Wang Z; Liu H; Yu H Bull Environ Contam Toxicol; 2012 Jul; 89(1):27-31. PubMed ID: 22562268 [TBL] [Abstract][Full Text] [Related]
20. Joint toxicity evaluation and QSAR modeling of aromatic amines and phenols to bacteria. Lu GH; Wang C; Wang PF; Chen ZY Bull Environ Contam Toxicol; 2009 Jul; 83(1):8-14. PubMed ID: 19308299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]