These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25887893)

  • 21. Hepatitis C Virus Genotyping Using Next-Generation Sequencing: An Efficient Alternative to Sanger Sequencing.
    Wales C; Corpus G; Chang C
    Arch Pathol Lab Med; 2017 Mar; 141(3):323-324. PubMed ID: 28234569
    [No Abstract]   [Full Text] [Related]  

  • 22. Next-generation sequencing of multiple individuals per barcoded library by deconvolution of sequenced amplicons using endonuclease fragment analysis.
    Andersen JD; Pereira V; Pietroni C; Mikkelsen M; Johansen P; Børsting C; Morling N
    Biotechniques; 2014 Aug; 57(2):91-4. PubMed ID: 25109295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The restriction enzyme target approach to genotyping by sequencing (GBS).
    Hilario E
    Methods Mol Biol; 2015; 1245():271-9. PubMed ID: 25373764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Random Tagging Genotyping by Sequencing (rtGBS), an Unbiased Approach to Locate Restriction Enzyme Sites across the Target Genome.
    Hilario E; Barron L; Deng CH; Datson PM; De Silva N; Davy MW; Storey RD
    PLoS One; 2015; 10(12):e0143193. PubMed ID: 26633193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing Randomized DNA Sequences Free of Restriction Enzyme Recognition Sites.
    Storm AJ; Jensen PA
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 28865135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TagDigger: user-friendly extraction of read counts from GBS and RAD-seq data.
    Clark LV; Sacks EJ
    Source Code Biol Med; 2016; 11():11. PubMed ID: 27408618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array™ System for simplified amplicon library preparation.
    Moonsamy PV; Williams T; Bonella P; Holcomb CL; Höglund BN; Hillman G; Goodridge D; Turenchalk GS; Blake LA; Daigle DA; Simen BB; Hamilton A; May AP; Erlich HA
    Tissue Antigens; 2013 Mar; 81(3):141-9. PubMed ID: 23398507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AMPLISAS: a web server for multilocus genotyping using next-generation amplicon sequencing data.
    Sebastian A; Herdegen M; Migalska M; Radwan J
    Mol Ecol Resour; 2016 Mar; 16(2):498-510. PubMed ID: 26257385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genotyping-by-sequencing performance in selected livestock species.
    Gurgul A; Miksza-Cybulska A; Szmatoła T; Jasielczuk I; Piestrzyńska-Kajtoch A; Fornal A; Semik-Gurgul E; Bugno-Poniewierska M
    Genomics; 2019 Mar; 111(2):186-195. PubMed ID: 29427639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spiked GBS: a unified, open platform for single marker genotyping and whole-genome profiling.
    Rife TW; Wu S; Bowden RL; Poland JA
    BMC Genomics; 2015 Mar; 16(1):248. PubMed ID: 25880848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GIbPSs: a toolkit for fast and accurate analyses of genotyping-by-sequencing data without a reference genome.
    Hapke A; Thiele D
    Mol Ecol Resour; 2016 Jul; 16(4):979-90. PubMed ID: 26858004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quack: A quality assurance tool for high throughput sequence data.
    Thrash A; Arick M; Peterson DG
    Anal Biochem; 2018 May; 548():38-43. PubMed ID: 29410015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A highly robust and optimized sequence-based approach for genetic polymorphism discovery and genotyping in large plant populations.
    Jiang N; Zhang F; Wu J; Chen Y; Hu X; Fang O; Leach LJ; Wang D; Luo Z
    Theor Appl Genet; 2016 Sep; 129(9):1739-57. PubMed ID: 27316437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the detection of barcoded reads in high throughput DNA sequencing data by controlling the false discovery rate.
    Buschmann T; Zhang R; Brash DE; Bystrykh LV
    BMC Bioinformatics; 2014 Aug; 15(1):264. PubMed ID: 25099007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple method for semi-random DNA amplicon fragmentation using the methylation-dependent restriction enzyme MspJI.
    Shinozuka H; Cogan NO; Shinozuka M; Marshall A; Kay P; Lin YH; Spangenberg GC; Forster JW
    BMC Biotechnol; 2015 Apr; 15():25. PubMed ID: 25887558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data.
    Torkamaneh D; Laroche J; Bastien M; Abed A; Belzile F
    BMC Bioinformatics; 2017 Jan; 18(1):5. PubMed ID: 28049422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skim-Based Genotyping by Sequencing Using a Double Haploid Population to Call SNPs, Infer Gene Conversions, and Improve Genome Assemblies.
    Bayer PE
    Methods Mol Biol; 2016; 1374():285-92. PubMed ID: 26519413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Skim-based genotyping by sequencing.
    Golicz AA; Bayer PE; Edwards D
    Methods Mol Biol; 2015; 1245():257-70. PubMed ID: 25373763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. VCF2CAPS-A high-throughput CAPS marker design from VCF files and its test-use on a genotyping-by-sequencing (GBS) dataset.
    Wesołowski W; Domnicz B; Augustynowicz J; Szklarczyk M
    PLoS Comput Biol; 2021 May; 17(5):e1008980. PubMed ID: 34014924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing.
    Campbell NR; Harmon SA; Narum SR
    Mol Ecol Resour; 2015 Jul; 15(4):855-67. PubMed ID: 25476721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.