These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25887909)

  • 1. Remote dysfunctions in spinal cord injury: Closer than ever.
    Leon-Ariza DS; Leon-Ariza JS; Bayona EA; Bayona-Prieto J; Leon-Sarmiento FE
    Clin Neurol Neurosurg; 2015 Jun; 133():102-3. PubMed ID: 25887909
    [No Abstract]   [Full Text] [Related]  

  • 2. The neuropathological foundations for the restorative neurology of spinal cord injury.
    Kakulas BA; Kaelan C
    Clin Neurol Neurosurg; 2015 Feb; 129 Suppl 1():S1-7. PubMed ID: 25683305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Female Rats Demonstrate Improved Locomotor Recovery and Greater Preservation of White and Gray Matter after Traumatic Spinal Cord Injury Compared to Males.
    Datto JP; Bastidas JC; Miller NL; Shah AK; Arheart KL; Marcillo AE; Dietrich WD; Pearse DD
    J Neurotrauma; 2015 Aug; 32(15):1146-57. PubMed ID: 25715192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cervical spondylosis: Evaluation of microstructural changes in spinal cord white matter and gray matter by diffusional kurtosis imaging.
    Hori M; Tsutsumi S; Yasumoto Y; Ito M; Suzuki M; Tanaka FS; Kyogoku S; Nakamura M; Tabuchi T; Fukunaga I; Suzuki Y; Kamagata K; Masutani Y; Aoki S
    Magn Reson Imaging; 2014 Jun; 32(5):428-32. PubMed ID: 24602824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D phase-sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times.
    Papinutto N; Schlaeger R; Panara V; Caverzasi E; Ahn S; Johnson KJ; Zhu AH; Stern WA; Laub G; Hauser SL; Henry RG
    J Magn Reson Imaging; 2015 Sep; 42(3):698-708. PubMed ID: 25483607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation-induced endothelial cell loss and reduction of the relative magnitude of the blood flow in the rat spinal cord.
    Zhang J; Wei L; Sun WL; Wang L; Zhang WJ; You H
    Brain Res; 2014 Oct; 1583():193-200. PubMed ID: 24953932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association of Deep Gray Matter Damage With Cortical and Spinal Cord Degeneration in Primary Progressive Multiple Sclerosis.
    Ruggieri S; Petracca M; Miller A; Krieger S; Ghassemi R; Bencosme Y; Riley C; Howard J; Lublin F; Inglese M
    JAMA Neurol; 2015 Dec; 72(12):1466-74. PubMed ID: 26457955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of experimental, morphological and mechanical factors on the murine spinal cord subjected to transverse contusion: A finite element study.
    Fournely M; Petit Y; Wagnac E; Evin M; Arnoux PJ
    PLoS One; 2020; 15(5):e0232975. PubMed ID: 32392241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal Expression of EAPP Modulates Neuronal Apoptosis and Reactive Astrogliosis After Spinal Cord Injury.
    Chen M; Ni Y; Liu Y; Xia X; Cao J; Wang C; Mao X; Zhang W; Chen C; Chen X; Wang Y
    J Cell Biochem; 2015 Jul; 116(7):1381-90. PubMed ID: 25704466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter.
    Dupont SM; De Leener B; Taso M; Le Troter A; Nadeau S; Stikov N; Callot V; Cohen-Adad J
    Neuroimage; 2017 Apr; 150():358-372. PubMed ID: 27663988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative MRI of the spinal cord and brain in adrenomyeloneuropathy: in vivo assessment of structural changes.
    Castellano A; Papinutto N; Cadioli M; Brugnara G; Iadanza A; Scigliuolo G; Pareyson D; Uziel G; Köhler W; Aubourg P; Falini A; Henry RG; Politi LS; Salsano E
    Brain; 2016 Jun; 139(Pt 6):1735-46. PubMed ID: 27068048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of brain and spinal cord magnetic resonance imaging features in neuromyelitis optica spectrum disorders patients with or without aquaporin-4 antibody.
    Fan M; Fu Y; Su L; Shen Y; Wood K; Yang L; Liu Y; Shi FD
    Mult Scler Relat Disord; 2017 Apr; 13():58-66. PubMed ID: 28427704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of the human spinal cord under the compressive loading.
    Karimi A; Shojaei A; Tehrani P
    J Chem Neuroanat; 2017 Dec; 86():15-18. PubMed ID: 28720407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory projections of primary sensory fibers in lumbar spinal cord after neonatal thoracic spinal transection in rats.
    Takiguchi M; Atobe Y; Kadota T; Funakoshi K
    Neuroscience; 2015 Sep; 304():349-54. PubMed ID: 26208841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrast enrichment of spinal cord MR imaging using a ratio of T1-weighted and T2-weighted signals.
    Teraguchi M; Yamada H; Yoshida M; Nakayama Y; Kondo T; Ito H; Terada M; Kaneoke Y
    J Magn Reson Imaging; 2014 Nov; 40(5):1199-207. PubMed ID: 24395471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular mechanisms in the pathophysiology of human spinal cord injury.
    Tator CH; Koyanagi I
    J Neurosurg; 1997 Mar; 86(3):483-92. PubMed ID: 9046306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional consequences of lumbar spinal cord contusion injuries in the adult rat.
    Magnuson DS; Lovett R; Coffee C; Gray R; Han Y; Zhang YP; Burke DA
    J Neurotrauma; 2005 May; 22(5):529-43. PubMed ID: 15892599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular reactions and compensatory tissue re-organization during spontaneous recovery after spinal cord injury in neonatal mice.
    Chawla RS; Züchner M; Mastrangelopoulou M; Lambert FM; Glover JC; Boulland JL
    Dev Neurobiol; 2017 Sep; 77(8):928-946. PubMed ID: 28033684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion-Weighted Magnetic Resonance Imaging Characterization of White Matter Injury Produced by Axon-Sparing Demyelination and Severe Contusion Spinal Cord Injury in Rats.
    Talbott JF; Nout-Lomas YS; Wendland MF; Mukherjee P; Huie JR; Hess CP; Mabray MC; Bresnahan JC; Beattie MS
    J Neurotrauma; 2016 May; 33(10):929-42. PubMed ID: 26483094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Human Mesenchymal Stem Cells Derived from Wharton's Jelly in Spinal Cord Injury Treatment Is Dose-Dependent and Can Be Facilitated by Repeated Application.
    Krupa P; Vackova I; Ruzicka J; Zaviskova K; Dubisova J; Koci Z; Turnovcova K; Urdzikova LM; Kubinova S; Rehak S; Jendelova P
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29772841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.