These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25887933)

  • 1. Reproductive natural history and successful juvenile propagation of the threatened Caribbean pillar coral Dendrogyra cylindrus.
    Marhaver KL; Vermeij MJ; Medina MM
    BMC Ecol; 2015 Mar; 15():9. PubMed ID: 25887933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata.
    Albright R; Mason B; Miller M; Langdon C
    Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20400-4. PubMed ID: 21059900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Janzen-Connell effects in a broadcast-spawning Caribbean coral: distance-dependent survival of larvae and settlers.
    Marhaver KL; Vermeij MJ; Rohwer F; Sandin SA
    Ecology; 2013 Jan; 94(1):146-60. PubMed ID: 23600249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyposalinity stress compromises the fertilization of gametes more than the survival of coral larvae.
    Hédouin L; Pilon R; Puisay A
    Mar Environ Res; 2015 Mar; 104():1-9. PubMed ID: 25562765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occupation Dynamics and Impacts of Damselfish Territoriality on Recovering Populations of the Threatened Staghorn Coral, Acropora cervicornis.
    Schopmeyer SA; Lirman D
    PLoS One; 2015; 10(11):e0141302. PubMed ID: 26580977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-dependent settlement and mortality structure the earliest life phases of a coral population.
    Vermeij MJ; Sandin SA
    Ecology; 2008 Jul; 89(7):1994-2004. PubMed ID: 18705385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of coal contamination on early life history processes of a reef-building coral, Acropora tenuis.
    Berry KLE; Hoogenboom MO; Brinkman DL; Burns KA; Negri AP
    Mar Pollut Bull; 2017 Jan; 114(1):505-514. PubMed ID: 28341127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs.
    Vollmer SV; Palumbi SR
    J Hered; 2007; 98(1):40-50. PubMed ID: 17158464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coral settlement on a highly disturbed equatorial reef system.
    Bauman AG; Guest JR; Dunshea G; Low J; Todd PA; Steinberg PD
    PLoS One; 2015; 10(5):e0127874. PubMed ID: 25992562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coral spawning patterns of
    Monfared MAA; Sheridan K; Dixon SP; Gledhill M; Le Berre T
    PeerJ; 2023; 11():e16315. PubMed ID: 37927798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of delayed settlement on post-settlement growth and survival of scleractinian coral larvae.
    Graham EM; Baird AH; Willis BL; Connolly SR
    Oecologia; 2013 Oct; 173(2):431-8. PubMed ID: 23525803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Habitat choice, recruitment and the response of coral reef fishes to coral degradation.
    Feary DA; Almany GR; McCormick MI; Jones GP
    Oecologia; 2007 Sep; 153(3):727-37. PubMed ID: 17566781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced salinity decreases the fertilization success and larval survival of two scleractinian coral species.
    Scott A; Harrison PL; Brooks LO
    Mar Environ Res; 2013 Dec; 92():10-4. PubMed ID: 24008005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coral mass spawning predicted by rapid seasonal rise in ocean temperature.
    Keith SA; Maynard JA; Edwards AJ; Guest JR; Bauman AG; van Hooidonk R; Heron SF; Berumen ML; Bouwmeester J; Piromvaragorn S; Rahbek C; Baird AH
    Proc Biol Sci; 2016 May; 283(1830):. PubMed ID: 27170709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesizing larval competence dynamics and reef-scale retention reveals a high potential for self-recruitment in corals.
    Figueiredo J; Baird AH; Connolly SR
    Ecology; 2013 Mar; 94(3):650-9. PubMed ID: 23687891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.
    Tebben J; Guest JR; Sin TM; Steinberg PD; Harder T
    PLoS One; 2014; 9(1):e87545. PubMed ID: 24489936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Annual cycles of solar insolation predict spawning times of Caribbean corals.
    van Woesik R; Lacharmoise F; Köksal S
    Ecol Lett; 2006 Apr; 9(4):390-8. PubMed ID: 16623724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A century of research on the larval distributions of the Atlantic eels: a re-examination of the data.
    Miller MJ; Bonhommeau S; Munk P; Castonguay M; Hanel R; McCleave JD
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1035-64. PubMed ID: 25291986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence.
    Aranda M; Banaszak AT; Bayer T; Luyten JR; Medina M; Voolstra CR
    Mol Ecol; 2011 Jul; 20(14):2955-72. PubMed ID: 21689186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic.
    Baums IB; Baker AC; Davies SW; Grottoli AG; Kenkel CD; Kitchen SA; Kuffner IB; LaJeunesse TC; Matz MV; Miller MW; Parkinson JE; Shantz AA
    Ecol Appl; 2019 Dec; 29(8):e01978. PubMed ID: 31332879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.