These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25888365)

  • 1. Spontaneous long-range calcium waves in developing butterfly wings.
    Ohno Y; Otaki JM
    BMC Dev Biol; 2015 Mar; 15():17. PubMed ID: 25888365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial patterns of correlated scale size and scale color in relation to color pattern elements in butterfly wings.
    Iwata M; Otaki JM
    J Insect Physiol; 2016 Feb; 85():32-45. PubMed ID: 26654884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Butterfly Wings Are Three-Dimensional: Pupal Cuticle Focal Spots and Their Associated Structures in Junonia Butterflies.
    Taira W; Otaki JM
    PLoS One; 2016; 11(1):e0146348. PubMed ID: 26731532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue.
    Iwata M; Ohno Y; Otaki JM
    PLoS One; 2014; 9(2):e89500. PubMed ID: 24586829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distal-less induces elemental color patterns in Junonia butterfly wings.
    Dhungel B; Ohno Y; Matayoshi R; Iwasaki M; Taira W; Adhikari K; Gurung R; Otaki JM
    Zoological Lett; 2016; 2():4. PubMed ID: 26937287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Butterfly eyespot color pattern formation requires physical contact of the pupal wing epithelium with extracellular materials for morphogenic signal propagation.
    Otaki JM
    BMC Dev Biol; 2020 Mar; 20(1):6. PubMed ID: 32234033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Range Effects of Wing Physical Damage and Distortion on Eyespot Color Patterns in the Hindwing of the Blue Pansy Butterfly Junonia orithya.
    Otaki JM
    Insects; 2018 Dec; 9(4):. PubMed ID: 30572627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative insights into questions of lepidopteran wing pattern homology.
    Monteiro A; Glaser G; Stockslager S; Glansdorp N; Ramos D
    BMC Dev Biol; 2006 Nov; 6():52. PubMed ID: 17090321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Butterfly eyespot organiser: in vivo imaging of the prospective focal cells in pupal wing tissues.
    Iwasaki M; Ohno Y; Otaki JM
    Sci Rep; 2017 Jan; 7():40705. PubMed ID: 28094808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positional dependence of scale size and shape in butterfly wings: wing-wide phenotypic coordination of color-pattern elements and background.
    Kusaba K; Otaki JM
    J Insect Physiol; 2009 Feb; 55(2):174-82. PubMed ID: 19071130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody.
    Dhungel B; Ohno Y; Matayoshi R; Otaki JM
    BMC Biotechnol; 2013 Mar; 13():27. PubMed ID: 23522444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential involvement of Hedgehog signaling in butterfly wing and eyespot development.
    Tong X; Lindemann A; Monteiro A
    PLoS One; 2012; 7(12):e51087. PubMed ID: 23227236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo.
    Ohno Y; Otaki JM
    PLoS One; 2015; 10(6):e0128332. PubMed ID: 26107809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological comparison of pupal wing cuticle patterns in butterflies.
    Otaki JM; Ogasawara T; Yamamoto H
    Zoolog Sci; 2005 Jan; 22(1):21-34. PubMed ID: 15684580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots.
    Özsu N; Monteiro A
    BMC Genomics; 2017 Oct; 18(1):788. PubMed ID: 29037153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Model for Selection of Eyespots on Butterfly Wings.
    Sekimura T; Venkataraman C; Madzvamuse A
    PLoS One; 2015; 10(11):e0141434. PubMed ID: 26536487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Single-Wing Removal Method to Assess Correspondence Between Gene Expression and Phenotype in Butterflies: The Case of Distal-less.
    Adhikari K; Otaki JM
    Zoolog Sci; 2016 Feb; 33(1):13-20. PubMed ID: 26853864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental dynamics of butterfly wings: real-time in vivo whole-wing imaging of twelve butterfly species.
    Iwata M; Tsutsumi M; Otaki JM
    Sci Rep; 2018 Nov; 8(1):16848. PubMed ID: 30442931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificially induced changes of butterfly wing colour patterns: dynamic signal interactions in eyespot development.
    Otaki JM
    Sci Rep; 2011; 1():111. PubMed ID: 22355628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local pharmacological effects of tungstate on the color-pattern determination of butterfly wings: a possible relationship between the eyespot and parafocal element.
    Dhungel B; Otaki JM
    Zoolog Sci; 2009 Nov; 26(11):758-64. PubMed ID: 19877835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.