BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25888417)

  • 1. Predicting heterosis for egg production traits in crossbred offspring of individual White Leghorn sires using genome-wide SNP data.
    Amuzu-Aweh EN; Bovenhuis H; de Koning DJ; Bijma P
    Genet Sel Evol; 2015 Apr; 47(1):27. PubMed ID: 25888417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA markers and crossbreeding scheme as means to select sires for heterosis in egg production of chickens.
    Atzmon G; Cassuto D; Lavi U; Cahaner A; Zeitlin G; Hillel J
    Anim Genet; 2002 Apr; 33(2):132-9. PubMed ID: 12047226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of heterosis using genome-wide SNP-marker data: application to egg production traits in white Leghorn crosses.
    Amuzu-Aweh EN; Bijma P; Kinghorn BP; Vereijken A; Visscher J; van Arendonk JA; Bovenhuis H
    Heredity (Edinb); 2013 Dec; 111(6):530-8. PubMed ID: 24105438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inbreeding and heterosis effects on quantitative traits in a White Leghorn population under long-term reciprocal recurrent selection.
    Flock DK; Ameli H; Glodek P
    Br Poult Sci; 1991 Jul; 32(3):451-62. PubMed ID: 1893259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic parameters, reciprocal cross differences, and age-related heterosis of egg-laying performance in chickens.
    Ni A; Calus MPL; Bovenhuis H; Yuan J; Wang Y; Sun Y; Chen J
    Genet Sel Evol; 2023 Dec; 55(1):87. PubMed ID: 38062365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrids generated by crossing elite laying chickens exhibited heterosis for clutch and egg quality traits.
    Isa AM; Sun Y; Shi L; Jiang L; Li Y; Fan J; Wang P; Ni A; Huang Z; Ma H; Li D; Chen J
    Poult Sci; 2020 Dec; 99(12):6332-6340. PubMed ID: 33248549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic correlation and heritabilities for purebred and crossbred performance in poultry egg production traits.
    Wei M; van der Werf JH
    J Anim Sci; 1995 Aug; 73(8):2220-6. PubMed ID: 8567456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection for heterosis from crossbred populations: comparison of the F3 and backcross populations.
    Sheridan AK
    Br Poult Sci; 1986 Dec; 27(4):551-9. PubMed ID: 3815123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection for heterosis from crossbred populations: estimation of the F1 heterosis and its mode of inheritance.
    Sheridan AK
    Br Poult Sci; 1986 Dec; 27(4):541-50. PubMed ID: 3815122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F2 population.
    Abasht B; Lamont SJ
    Anim Genet; 2007 Oct; 38(5):491-8. PubMed ID: 17894563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling heterotic effects in beef cattle using genome-wide SNP-marker genotypes.
    Akanno EC; Abo-Ismail MK; Chen L; Crowley JJ; Wang Z; Li C; Basarab JA; MacNeil MD; Plastow GS
    J Anim Sci; 2018 Apr; 96(3):830-845. PubMed ID: 29373745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of genetic parameters based on individual and group mean records in laying hens.
    Nurgiartiningsih VM; Mielenz N; Preisinger R; Schmutz M; Schueler L
    Br Poult Sci; 2004 Oct; 45(5):604-10. PubMed ID: 15623212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crossbred sire: experimental results for sheep.
    Leymaster KA
    J Anim Sci; 1987 Jul; 65(1):110-6. PubMed ID: 3301776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Gene differential expression of liver tissues in crossbred versus purebred chicken and their relationship with heterosis of meat trait].
    Wang D; Zhang Y; Sun DX; Yu Y; Xu GY; Li JY
    Yi Chuan Xue Bao; 2004 Mar; 31(3):257-64. PubMed ID: 15195564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterosis in normal versus dwarf laying hens.
    Merat P; Minvielle F; Bordas A; Coquerelle G
    Poult Sci; 1994 Jan; 73(1):1-6. PubMed ID: 8165154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of heterosis and recombination loss in crosses of inbred Leghorn lines derived from a common base population.
    Abplanalp H; Okamoto S; Napolitano D; Len RE
    Poult Sci; 1984 Feb; 63(2):234-9. PubMed ID: 6709564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis of ovarian tissues highlights genes controlling energy homeostasis and oxidative stress as potential drivers of heterosis for egg number and clutch size in crossbred laying hens.
    Isa AM; Sun Y; Wang Y; Li Y; Yuan J; Ni A; Ma H; Shi L; Tesfay HH; Zong Y; Wang P; Ge P; Chen J
    Poult Sci; 2024 Jan; 103(1):103163. PubMed ID: 37980751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of sire contribution and breed-of-origin of alleles in a three-way crossbred broiler dataset.
    Calus MPL; Vandenplas J; Hulsegge I; Borg R; Henshall JM; Hawken R
    Poult Sci; 2019 Dec; 98(12):6270-6280. PubMed ID: 31393589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Milk, fat, protein, somatic cell score, and days open among Holstein, Brown Swiss, and their crosses.
    Dechow CD; Rogers GW; Cooper JB; Phelps MI; Mosholder AL
    J Dairy Sci; 2007 Jul; 90(7):3542-9. PubMed ID: 17582138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the interaction of dams with hatches, sires in breed, and breed of sire for five traits in the fowl.
    Vasquez CG; Bohren BB
    Poult Sci; 1983 Nov; 62(11):2125-9. PubMed ID: 6657556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.