These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 25888720)
1. Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population. Vieira CS; Mattos DP; Waniek PJ; Santangelo JM; Figueiredo MB; Gumiel M; da Mota FF; Castro DP; Garcia ES; Azambuja P Parasit Vectors; 2015 Mar; 8():135. PubMed ID: 25888720 [TBL] [Abstract][Full Text] [Related]
2. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Vieira CS; Waniek PJ; Castro DP; Mattos DP; Moreira OC; Azambuja P Parasit Vectors; 2016 Mar; 9():119. PubMed ID: 26931761 [TBL] [Abstract][Full Text] [Related]
3. Immune signaling pathways in Pereira SB; de Mattos DP; Gonzalez MS; Mello CB; Azambuja P; de Castro DP; Vieira CS Front Physiol; 2024; 15():1435447. PubMed ID: 39210973 [TBL] [Abstract][Full Text] [Related]
4. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. Azambuja P; Garcia ES; Waniek PJ; Vieira CS; Figueiredo MB; Gonzalez MS; Mello CB; Castro DP; Ratcliffe NA J Insect Physiol; 2017; 97():45-65. PubMed ID: 27866813 [TBL] [Abstract][Full Text] [Related]
6. Azadirachtin interferes with basal immunity and microbial homeostasis in the Rhodnius prolixus midgut. Vieira CS; Figueiredo MB; Moraes CDS; Pereira SB; Dyson P; Mello CB; Castro DP; Azambuja P Dev Comp Immunol; 2021 Jan; 114():103864. PubMed ID: 32918931 [TBL] [Abstract][Full Text] [Related]
7. Rhodnius prolixus: modulation of antioxidant defenses by Trypanosoma rangeli. Cosentino-Gomes D; Rocco-Machado N; Meyer-Fernandes JR Exp Parasitol; 2014 Oct; 145():118-24. PubMed ID: 25131776 [TBL] [Abstract][Full Text] [Related]
8. Effect of temperature and vector nutrition on the development and multiplication of Trypanosoma rangeli in Rhodnius prolixus. Ferreira RC; Teixeira CF; de Sousa VFA; Guarneri AA Parasitol Res; 2018 Jun; 117(6):1737-1744. PubMed ID: 29626223 [TBL] [Abstract][Full Text] [Related]
9. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus. Peterson JK; Graham AL; Elliott RJ; Dobson AP; Triana Chávez O Parasitology; 2016 Aug; 143(9):1157-67. PubMed ID: 27174360 [TBL] [Abstract][Full Text] [Related]
10. Nitric oxide effects on Rhodnius prolixus's immune responses, gut microbiota and Trypanosoma cruzi development. Batista KKDS; Vieira CS; Florentino EB; Caruso KFB; Teixeira PTP; Moraes CDS; Genta FA; de Azambuja P; de Castro DP J Insect Physiol; 2020 Oct; 126():104100. PubMed ID: 32822690 [TBL] [Abstract][Full Text] [Related]
11. Trypanosoma cruzi and Trypanosoma rangeli: interplay with hemolymph components of Rhodnius prolixus. Mello CB; Garcia ES; Ratcliffe NA; Azambuja P J Invertebr Pathol; 1995 May; 65(3):261-8. PubMed ID: 7745280 [TBL] [Abstract][Full Text] [Related]
12. Modulation of IMD, Toll, and Jak/STAT Immune Pathways Genes in the Fat Body of Rolandelli A; Nascimento AEC; Silva LS; Rivera-Pomar R; Guarneri AA Front Cell Infect Microbiol; 2020; 10():598526. PubMed ID: 33537241 [No Abstract] [Full Text] [Related]
13. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Vieira CS; Waniek PJ; Mattos DP; Castro DP; Mello CB; Ratcliffe NA; Garcia ES; Azambuja P Parasit Vectors; 2014 May; 7():232. PubMed ID: 24885969 [TBL] [Abstract][Full Text] [Related]
14. The interaction between Trypanosoma rangeli and the nitrophorins in the salivary glands of the triatomine Rhodnius prolixus (Hemiptera; Reduviidae). Paim RM; Pereira MH; Araújo RN; Gontijo NF; Guarneri AA Insect Biochem Mol Biol; 2013 Mar; 43(3):229-36. PubMed ID: 23295786 [TBL] [Abstract][Full Text] [Related]
15. Temperature and parasite life-history are important modulators of the outcome of Trypanosoma rangeli-Rhodnius prolixus interactions. Rodrigues Jde O; Lorenzo MG; Martins-Filho OA; Elliot SL; Guarneri AA Parasitology; 2016 Sep; 143(11):1459-68. PubMed ID: 27460893 [TBL] [Abstract][Full Text] [Related]
16. A Kazal-type inhibitor is modulated by Trypanosoma cruzi to control microbiota inside the anterior midgut of Rhodnius prolixus. Soares TS; Buarque DS; Queiroz BR; Gomes CM; Braz GR; Araújo RN; Pereira MH; Guarneri AA; Tanaka AS Biochimie; 2015 May; 112():41-8. PubMed ID: 25731714 [TBL] [Abstract][Full Text] [Related]
17. Behavioral fever response in Rhodnius prolixus (Reduviidae: Triatominae) to intracoelomic inoculation of Trypanosoma cruzi. Hinestroza G; Ortiz MI; Molina J Rev Soc Bras Med Trop; 2016; 49(4):425-32. PubMed ID: 27598628 [TBL] [Abstract][Full Text] [Related]
18. The NF-κB Inhibitor, IMD-0354, Affects Immune Gene Expression, Bacterial Microbiota and Vieira CS; Moreira OC; Batista KKS; Ratcliffe NA; Castro DP; Azambuja P Front Physiol; 2018; 9():1189. PubMed ID: 30233391 [No Abstract] [Full Text] [Related]
19. Interaction between Trypanosoma rangeli and the Rhodnius prolixus salivary gland depends on the phosphotyrosine ecto-phosphatase activity of the parasite. Dos-Santos AL; Dick CF; Alves-Bezerra M; Silveira TS; Paes LS; Gondim KC; Meyer-Fernandes JR Int J Parasitol; 2012 Aug; 42(9):819-27. PubMed ID: 22749957 [TBL] [Abstract][Full Text] [Related]