These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 25888742)
1. Dynamic expression of miRNAs across immature and adult stages of the malaria mosquito Anopheles stephensi. Jain S; Rana V; Tridibes A; Sunil S; Bhatnagar RK Parasit Vectors; 2015 Mar; 8():179. PubMed ID: 25888742 [TBL] [Abstract][Full Text] [Related]
2. Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi. Mead EA; Tu Z BMC Genomics; 2008 May; 9():244. PubMed ID: 18500992 [TBL] [Abstract][Full Text] [Related]
3. Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection. Liu W; Hao Z; Huang L; Chen L; Wei Q; Cai L; Liang S Parasit Vectors; 2017 Feb; 10(1):86. PubMed ID: 28209211 [TBL] [Abstract][Full Text] [Related]
5. Analysis of microRNA profile of Anopheles sinensis by deep sequencing and bioinformatic approaches. Feng X; Zhou X; Zhou S; Wang J; Hu W Parasit Vectors; 2018 Mar; 11(1):172. PubMed ID: 29530087 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of the expression profile of microRNAs in Anopheles anthropophagus. Liu W; Huang H; Xing C; Li C; Tan F; Liang S Parasit Vectors; 2014 Apr; 7():159. PubMed ID: 24690438 [TBL] [Abstract][Full Text] [Related]
7. Deep sequencing of small RNA libraries reveals dynamic expression patterns of microRNAs in multiple developmental stages of Bactrocera dorsalis. Huang Y; Dou W; Liu B; Wei D; Liao CY; Smagghe G; Wang JJ Insect Mol Biol; 2014 Oct; 23(5):656-67. PubMed ID: 24957108 [TBL] [Abstract][Full Text] [Related]
8. Mosquito-Borne Diseases and Omics: Tissue-Restricted Expression and Alternative Splicing Revealed by Transcriptome Profiling of Anopheles stephensi. Sreenivasamurthy SK; Madugundu AK; Patil AH; Dey G; Mohanty AK; Kumar M; Patel K; Wang C; Kumar A; Pandey A; Prasad TSK OMICS; 2017 Aug; 21(8):488-497. PubMed ID: 28708456 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome-wide analysis of microRNA expression in the malaria mosquito Anopheles gambiae. Biryukova I; Ye T; Levashina E BMC Genomics; 2014 Jul; 15(1):557. PubMed ID: 24997592 [TBL] [Abstract][Full Text] [Related]
10. Identification and characterization of microRNAs expressed in the African malaria vector Anopheles funestus life stages using high throughput sequencing. Allam M; Spillings BL; Abdalla H; Mapiye D; Koekemoer LL; Christoffels A Malar J; 2016 Nov; 15(1):542. PubMed ID: 27825380 [TBL] [Abstract][Full Text] [Related]
11. miRNAâğmRNA Conflux Regulating Immunity and Oxidative Stress Pathways in the Midgut of Blood-Fed Jain S; Shrinet J; Tridibes A; Bhatnagar RK; Sunil S Noncoding RNA; 2015 Nov; 1(3):222-245. PubMed ID: 29861425 [TBL] [Abstract][Full Text] [Related]
12. Salivary gland transcriptome analysis during Plasmodium infection in malaria vector Anopheles stephensi. Dixit R; Sharma A; Mourya DT; Kamaraju R; Patole MS; Shouche YS Int J Infect Dis; 2009 Sep; 13(5):636-46. PubMed ID: 19128996 [TBL] [Abstract][Full Text] [Related]
13. MicroRNA Tissue Atlas of the Malaria Mosquito Lampe L; Levashina EA G3 (Bethesda); 2018 Jan; 8(1):185-193. PubMed ID: 29146584 [No Abstract] [Full Text] [Related]
14. Small RNA-Seq Analysis Reveals miRNA Expression Dynamics Across Tissues in the Malaria Vector, Bryant WB; Mills MK; Olson BJ; Michel K G3 (Bethesda); 2019 May; 9(5):1507-1517. PubMed ID: 30846481 [TBL] [Abstract][Full Text] [Related]
15. Functional characterization of three MicroRNAs of the Asian tiger mosquito, Aedes albopictus. Puthiyakunnon S; Yao Y; Li Y; Gu J; Peng H; Chen X Parasit Vectors; 2013 Aug; 6(1):230. PubMed ID: 23924583 [TBL] [Abstract][Full Text] [Related]
16. Characterization and potential role of microRNA in the Chinese dominant malaria mosquito Feng X; Wu J; Zhou S; Wang J; Hu W Cell Biosci; 2018; 8():29. PubMed ID: 29682276 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA transcriptome profiling of mice brains infected with Japanese encephalitis virus by RNA sequencing. Li XF; Cao RB; Luo J; Fan JM; Wang JM; Zhang YP; Gu JY; Feng XL; Zhou B; Chen PY Infect Genet Evol; 2016 Apr; 39():249-257. PubMed ID: 26845346 [TBL] [Abstract][Full Text] [Related]
18. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. Chen J; Zheng Y; Qin L; Wang Y; Chen L; He Y; Fei Z; Lu G BMC Plant Biol; 2016 Apr; 16():80. PubMed ID: 27068118 [TBL] [Abstract][Full Text] [Related]
19. Highly focused transcriptional response of Anopheles coluzzii to O'nyong nyong arbovirus during the primary midgut infection. Carissimo G; Pain A; Belda E; Vernick KD BMC Genomics; 2018 Jul; 19(1):526. PubMed ID: 29986645 [TBL] [Abstract][Full Text] [Related]
20. Identification and profiling of Bactrocera dorsalis microRNAs and their potential roles in regulating the developmental transitions of egg hatching, molting, pupation and adult eclosion. Zhang Q; Dou W; Song ZH; Jin TJ; Yuan GR; De Schutter K; Smagghe G; Wang JJ Insect Biochem Mol Biol; 2020 Dec; 127():103475. PubMed ID: 33059019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]