BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25888779)

  • 21. The essential role of jasmonic acid in plant-herbivore interactions--using the wild tobacco Nicotiana attenuata as a model.
    Wang L; Wu J
    J Genet Genomics; 2013 Dec; 40(12):597-606. PubMed ID: 24377866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Jasmonate signaling in the field, part II: insect-guided characterization of genetic variations in jasmonate-dependent defenses of transgenic and natural Nicotiana attenuata populations.
    Gaquerel E; Stitz M; Kallenbach M; Baldwin IT
    Methods Mol Biol; 2013; 1011():97-109. PubMed ID: 23615990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores.
    Lee G; Joo Y; Kim SG; Baldwin IT
    Plant J; 2017 Nov; 92(3):414-425. PubMed ID: 28805339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nicotine synthesis in Nicotiana tabacum L. induced by mechanical wounding is regulated by auxin.
    Shi Q; Li C; Zhang F
    J Exp Bot; 2006; 57(11):2899-907. PubMed ID: 16868042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome profiling reveals differential gene expression of detoxification enzymes in a hemimetabolous tobacco pest after feeding on jasmonate-silenced Nicotiana attenuata plants.
    Crava CM; Brütting C; Baldwin IT
    BMC Genomics; 2016 Dec; 17(1):1005. PubMed ID: 27931186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.
    Yang ZB; He C; Ma Y; Herde M; Ding Z
    Plant Physiol; 2017 Feb; 173(2):1420-1433. PubMed ID: 27932419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore.
    Kahl J; Siemens DH; Aerts RJ; Gäbler R; Kühnemann F; Preston CA; Baldwin IT
    Planta; 2000 Jan; 210(2):336-42. PubMed ID: 10664141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insect herbivory antagonizes leaf cooling responses to elevated temperature in tomato.
    Havko NE; Das MR; McClain AM; Kapali G; Sharkey TD; Howe GA
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2211-2217. PubMed ID: 31964814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Jasmonates and its mimics differentially elicit systemic defence responses in Nicotiana attenuata.
    Pluskota WE; Qu N; Maitrejean M; Boland W; Baldwin IT
    J Exp Bot; 2007; 58(15-16):4071-82. PubMed ID: 18065767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore.
    Pangesti N; Reichelt M; van de Mortel JE; Kapsomenou E; Gershenzon J; van Loon JJ; Dicke M; Pineda A
    J Chem Ecol; 2016 Dec; 42(12):1212-1225. PubMed ID: 27848154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incorporation and translocation of 2-deoxy-2-[(18)F]fluoro-D-glucose in Sorghum bicolor (L.) Moench monitored using a planar positron imaging system.
    Hattori E; Uchida H; Harada N; Ohta M; Tsukada H; Hara Y; Suzuki T
    Planta; 2008 Apr; 227(5):1181-6. PubMed ID: 18273639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Axial and Radial Oxylipin Transport.
    Gasperini D; Chauvin A; Acosta IF; Kurenda A; Stolz S; Chételat A; Wolfender JL; Farmer EE
    Plant Physiol; 2015 Nov; 169(3):2244-54. PubMed ID: 26338953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature.
    Machado RA; McClure M; Hervé MR; Baldwin IT; Erb M
    Elife; 2016 Jun; 5():. PubMed ID: 27352734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. COI1-Regulated Hydroxylation of Jasmonoyl-L-isoleucine Impairs Nicotiana attenuata's Resistance to the Generalist Herbivore Spodoptera litura.
    Luo J; Wei K; Wang S; Zhao W; Ma C; Hettenhausen C; Wu J; Cao G; Sun G; Baldwin IT; Wu J; Wang L
    J Agric Food Chem; 2016 Apr; 64(14):2822-31. PubMed ID: 26985773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel application of 2-[(18)F]fluoro-2-deoxy-D-glucose to study plant defenses.
    Ferrieri AP; Appel H; Ferrieri RA; Schultz JC
    Nucl Med Biol; 2012 Nov; 39(8):1152-60. PubMed ID: 22795788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms.
    Robert CA; Ferrieri RA; Schirmer S; Babst BA; Schueller MJ; Machado RA; Arce CC; Hibbard BE; Gershenzon J; Turlings TC; Erb M
    Plant Cell Environ; 2014 Nov; 37(11):2613-22. PubMed ID: 24762051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots.
    Schwachtje J; Minchin PE; Jahnke S; van Dongen JT; Schittko U; Baldwin IT
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12935-40. PubMed ID: 16912118
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparing 2-[18F]fluoro-2-deoxy-D-glucose and [68Ga]gallium-citrate translocation in Arabidopsis thaliana.
    Fatangare A; Gebhardt P; Saluz H; Svatoš A
    Nucl Med Biol; 2014 Oct; 41(9):737-43. PubMed ID: 25037754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types.
    Schweiger R; Heise AM; Persicke M; Müller C
    Plant Cell Environ; 2014 Jul; 37(7):1574-85. PubMed ID: 24372400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spodoptera littoralis-induced lectin expression in tobacco.
    Vandenborre G; Miersch O; Hause B; Smagghe G; Wasternack C; Van Damme EJ
    Plant Cell Physiol; 2009 Jun; 50(6):1142-55. PubMed ID: 19416954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.