These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 25888799)
1. The evolution of granule fracture strength as a function of impeller tip speed and granule size for a novel reverse-phase wet granulation process. Wade JB; Martin GP; Long DF Int J Pharm; 2015 Jul; 488(1-2):95-101. PubMed ID: 25888799 [TBL] [Abstract][Full Text] [Related]
2. Controlling granule size through breakage in a novel reverse-phase wet granulation process: the effect of impeller speed and binder liquid viscosity. Wade JB; Martin GP; Long DF Int J Pharm; 2015 Jan; 478(2):439-46. PubMed ID: 25475017 [TBL] [Abstract][Full Text] [Related]
3. The development of a growth regime map for a novel reverse-phase wet granulation process. Wade JB; Martin GP; Long DF Int J Pharm; 2016 Oct; 512(1):224-233. PubMed ID: 27568497 [TBL] [Abstract][Full Text] [Related]
4. Feasibility assessment for a novel reverse-phase wet granulation process: the effect of liquid saturation and binder liquid viscosity. Wade JB; Martin GP; Long DF Int J Pharm; 2014 Nov; 475(1-2):450-61. PubMed ID: 25218187 [TBL] [Abstract][Full Text] [Related]
5. Evaluating scale-up rules of a high-shear wet granulation process. Tao J; Pandey P; Bindra DS; Gao JZ; Narang AS J Pharm Sci; 2015 Jul; 104(7):2323-33. PubMed ID: 26010137 [TBL] [Abstract][Full Text] [Related]
6. Impact of Different Dry and Wet Granulation Techniques on Granule and Tablet Properties: A Comparative Study. Arndt OR; Baggio R; Adam AK; Harting J; Franceschinis E; Kleinebudde P J Pharm Sci; 2018 Dec; 107(12):3143-3152. PubMed ID: 30244008 [TBL] [Abstract][Full Text] [Related]
7. Continuous twin screw granulation: influence of process variables on granule and tablet quality. Vercruysse J; Córdoba Díaz D; Peeters E; Fonteyne M; Delaet U; Van Assche I; De Beer T; Remon JP; Vervaet C Eur J Pharm Biopharm; 2012 Sep; 82(1):205-11. PubMed ID: 22687571 [TBL] [Abstract][Full Text] [Related]
8. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation. Osei-Yeboah F; Feng Y; Sun CC J Pharm Sci; 2014 Jan; 103(1):207-15. PubMed ID: 24218097 [TBL] [Abstract][Full Text] [Related]
9. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate. Nordström J; Alderborn G J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Intragranular and Extragranular Fracture in the Development of Tablet Tensile Strength. Mitra B; Hilden J; Litster J J Pharm Sci; 2018 Oct; 107(10):2581-2591. PubMed ID: 29803616 [TBL] [Abstract][Full Text] [Related]
11. Twin screw granulation as a simple and efficient tool for continuous wet granulation. Keleb EI; Vermeire A; Vervaet C; Remon JP Int J Pharm; 2004 Apr; 273(1-2):183-94. PubMed ID: 15010142 [TBL] [Abstract][Full Text] [Related]
12. The effect of the physical state of binders on high-shear wet granulation and granule properties: a mechanistic approach to understand the high-shear wet granulation process. part IV. the impact of rheological state and tip-speeds. Li J; Tao L; Buckley D; Tao J; Gao J; Hubert M J Pharm Sci; 2013 Dec; 102(12):4384-94. PubMed ID: 24135976 [TBL] [Abstract][Full Text] [Related]
13. Roll compaction/dry granulation: effect of raw material particle size on granule and tablet properties. Herting MG; Kleinebudde P Int J Pharm; 2007 Jun; 338(1-2):110-8. PubMed ID: 17324537 [TBL] [Abstract][Full Text] [Related]
14. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting. Khorasani M; Amigo JM; Sun CC; Bertelsen P; Rantanen J Eur J Pharm Biopharm; 2015 Jun; 93():293-302. PubMed ID: 25917640 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the effect of impeller speed on granules formed using a PMA-1 high shear granulator. Logan R; Briens L Drug Dev Ind Pharm; 2012 Nov; 38(11):1394-404. PubMed ID: 22436101 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation. Grote S; Kleinebudde P Pharm Dev Technol; 2019 Mar; 24(3):314-322. PubMed ID: 29757067 [TBL] [Abstract][Full Text] [Related]
17. Roll compaction/dry granulation: Suitability of different binders. Mangal H; Kirsolak M; Kleinebudde P Int J Pharm; 2016 Apr; 503(1-2):213-9. PubMed ID: 26976499 [TBL] [Abstract][Full Text] [Related]
18. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction. Wu SJ; Sun C J Pharm Sci; 2007 May; 96(5):1445-50. PubMed ID: 17455348 [TBL] [Abstract][Full Text] [Related]
19. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes. Gabbott IP; Al Husban F; Reynolds GK Eur J Pharm Biopharm; 2016 Sep; 106():70-8. PubMed ID: 27016211 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic basis for the effects of process parameters on quality attributes in high shear wet granulation. Badawy SI; Narang AS; LaMarche K; Subramanian G; Varia SA Int J Pharm; 2012 Dec; 439(1-2):324-33. PubMed ID: 22981985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]