These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25889021)

  • 61. Spinal Fbxo3-Dependent Fbxl2 Ubiquitination of Active Zone Protein RIM1α Mediates Neuropathic Allodynia through CaV2.2 Activation.
    Lai CY; Ho YC; Hsieh MC; Wang HH; Cheng JK; Chau YP; Peng HY
    J Neurosci; 2016 Sep; 36(37):9722-38. PubMed ID: 27629721
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Picroside Ⅱ attenuates neuropathic pain by regulating inflammation and spinal excitatory synaptic transmission.
    Duan D; Wang L; Feng Y; Hu D; Cui D
    Can J Physiol Pharmacol; 2024 Apr; 102(4):281-292. PubMed ID: 37976472
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Promoted Interaction of C/EBPα with Demethylated Cxcr3 Gene Promoter Contributes to Neuropathic Pain in Mice.
    Jiang BC; He LN; Wu XB; Shi H; Zhang WW; Zhang ZJ; Cao DL; Li CH; Gu J; Gao YJ
    J Neurosci; 2017 Jan; 37(3):685-700. PubMed ID: 28100749
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Predominant role of spinal P2Y1 receptors in the development of neuropathic pain in rats.
    Barragán-Iglesias P; Pineda-Farias JB; Bravo-Hernández M; Cervantes-Durán C; Price TJ; Murbartián J; Granados-Soto V
    Brain Res; 2016 Apr; 1636():43-51. PubMed ID: 26835558
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naïve rats and in rat models of inflammatory and neuropathic pain.
    Elmes SJ; Jhaveri MD; Smart D; Kendall DA; Chapman V
    Eur J Neurosci; 2004 Nov; 20(9):2311-20. PubMed ID: 15525273
    [TBL] [Abstract][Full Text] [Related]  

  • 66. TRPV1 receptor inhibition decreases CCL2-induced hyperalgesia.
    Spicarova D; Adamek P; Kalynovska N; Mrozkova P; Palecek J
    Neuropharmacology; 2014 Jun; 81():75-84. PubMed ID: 24495396
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Central pituitary adenylate cyclase 1 receptors modulate nociceptive behaviors in both inflammatory and neuropathic pain states.
    Davis-Taber R; Baker S; Lehto SG; Zhong C; Surowy CS; Faltynek CR; Scott VE; Honore P
    J Pain; 2008 May; 9(5):449-56. PubMed ID: 18337184
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The antihyperalgesic effects of intrathecal bupropion, a dopamine and noradrenaline reuptake inhibitor, in a rat model of neuropathic pain.
    Hoshino H; Obata H; Nakajima K; Mieda R; Saito S
    Anesth Analg; 2015 Feb; 120(2):460-6. PubMed ID: 25427287
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Involvement of the long-chain fatty acid receptor GPR40 in depression-related behavior.
    Nishinaka T; Yamashita T; Nakamoto K; Kasuya F; Tokuyama S
    J Pharmacol Sci; 2014; 125(1):112-5. PubMed ID: 24758921
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Over-expression of astrocytic ET-1 attenuates neuropathic pain by inhibition of ERK1/2 and Akt(s) via activation of ETA receptor.
    Hung VK; Tai LW; Qiu Q; Luo X; Wong KL; Chung SK; Cheung CW
    Mol Cell Neurosci; 2014 May; 60():26-35. PubMed ID: 24593954
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spinal protein kinase C/extracellular signal-regulated kinase signal pathway mediates hyperalgesia priming.
    Chen WH; Chang YT; Chen YC; Cheng SJ; Chen CC
    Pain; 2018 May; 159(5):907-918. PubMed ID: 29672451
    [TBL] [Abstract][Full Text] [Related]  

  • 72. GPR40 activation leads to CREB and ERK phosphorylation in primary cultures of neurons from the mouse CNS and in human neuroblastoma cells.
    Zamarbide M; Etayo-Labiano I; Ricobaraza A; Martínez-Pinilla E; Aymerich MS; Luis Lanciego J; Pérez-Mediavilla A; Franco R
    Hippocampus; 2014 Jul; 24(7):733-9. PubMed ID: 24550142
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Alleviation of behavioral hypersensitivity in mouse models of inflammatory pain with two structurally different casein kinase 1 (CK1) inhibitors.
    Kurihara T; Sakurai E; Toyomoto M; Kii I; Kawamoto D; Asada T; Tanabe T; Yoshimura M; Hagiwara M; Miyata A
    Mol Pain; 2014 Mar; 10():17. PubMed ID: 24612480
    [TBL] [Abstract][Full Text] [Related]  

  • 74. GPR40, a free fatty acid receptor, differentially impacts osteoblast behavior depending on differentiation stage and environment.
    Philippe C; Wauquier F; Lyan B; Coxam V; Wittrant Y
    Mol Cell Biochem; 2016 Jan; 412(1-2):197-208. PubMed ID: 26699911
    [TBL] [Abstract][Full Text] [Related]  

  • 75. GW9508 ameliorates cognitive dysfunction via the external treatment of encephalopathy in Aβ
    Gong Y; Li Y; Liu X; He L
    Eur J Pharmacol; 2021 Oct; 909():174362. PubMed ID: 34297968
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Targeting FFA1 and FFA4 receptors in cancer-induced cachexia.
    Freitas RDS; Muradás TC; Dagnino APA; Rost FL; Costa KM; Venturin GT; Greggio S; da Costa JC; Campos MM
    Am J Physiol Endocrinol Metab; 2020 Nov; 319(5):E877-E892. PubMed ID: 32893672
    [TBL] [Abstract][Full Text] [Related]  

  • 77. GPR40 agonist ameliorates liver X receptor-induced lipid accumulation in liver by activating AMPK pathway.
    Li M; Meng X; Xu J; Huang X; Li H; Li G; Wang S; Man Y; Tang W; Li J
    Sci Rep; 2016 Apr; 6():25237. PubMed ID: 27121981
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Possible involvement of FFAR1 signaling in mouse emotional behaviors through the regulation of brain monoamine releases].
    Kurihara T
    Nihon Yakurigaku Zasshi; 2023; 158(6):454-459. PubMed ID: 37914322
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys.
    Ma D; Tao B; Warashina S; Kotani S; Lu L; Kaplamadzhiev DB; Mori Y; Tonchev AB; Yamashima T
    Neurosci Res; 2007 Aug; 58(4):394-401. PubMed ID: 17583366
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Activation of GPR40 induces hypothalamic neurogenesis through p38- and BDNF-dependent mechanisms.
    Engel DF; Bobbo VCD; Solon CS; Nogueira GA; Moura-Assis A; Mendes NF; Zanesco AM; Papangelis A; Ulven T; Velloso LA
    Sci Rep; 2020 Jul; 10(1):11047. PubMed ID: 32632088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.