These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. Galle S; Malcolm P; Collins SH; De Clercq D J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684 [TBL] [Abstract][Full Text] [Related]
5. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
6. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. Kao PC; Lewis CL; Ferris DP J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331 [TBL] [Abstract][Full Text] [Related]
10. Mechanics and energetics of level walking with powered ankle exoskeletons. Sawicki GS; Ferris DP J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674 [TBL] [Abstract][Full Text] [Related]
11. Timing of propulsion-related biomechanical variables is impaired in individuals with post-stroke hemiparesis. Alam Z; Rendos NK; Vargas AM; Makanjuola J; Kesar TM Gait Posture; 2022 Jul; 96():275-278. PubMed ID: 35716486 [TBL] [Abstract][Full Text] [Related]
12. Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users. Moltedo M; Baček T; Serrien B; Langlois K; Vanderborght B; Lefeber D; Rodriguez-Guerrero C J Neuroeng Rehabil; 2020 Jul; 17(1):98. PubMed ID: 32680539 [TBL] [Abstract][Full Text] [Related]
13. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Kao PC; Lewis CL; Ferris DP J Biomech; 2010 Jan; 43(2):203-9. PubMed ID: 19878952 [TBL] [Abstract][Full Text] [Related]
14. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. Nuckols RW; Sawicki GS J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840 [TBL] [Abstract][Full Text] [Related]
15. Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study. Shafer BA; Philius SA; Nuckols RW; McCall J; Young AJ; Sawicki GS Front Bioeng Biotechnol; 2021; 9():615358. PubMed ID: 33954159 [TBL] [Abstract][Full Text] [Related]
16. Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study. Alingh JF; Groen BE; Kamphuis JF; Geurts ACH; Weerdesteyn V J Neuroeng Rehabil; 2021 Apr; 18(1):69. PubMed ID: 33892754 [TBL] [Abstract][Full Text] [Related]
17. The ReWalk ReStore™ soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation. Awad LN; Esquenazi A; Francisco GE; Nolan KJ; Jayaraman A J Neuroeng Rehabil; 2020 Jun; 17(1):80. PubMed ID: 32552775 [TBL] [Abstract][Full Text] [Related]
18. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis. Ingraham KA; Fey NP; Simon AM; Hargrove LJ PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889 [TBL] [Abstract][Full Text] [Related]