These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25889648)

  • 1. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock.
    Su H; Jiang J; Lu Q; Zhao Z; Xie T; Zhao H; Wang M
    Microb Cell Fact; 2015 Feb; 14():16. PubMed ID: 25889648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Brevibacterium flavum for the production of renewable bioenergy: C4-C5 advanced alcohols.
    Su H; Lin J; Wang Y; Chen Q; Wang G; Tan F
    Biotechnol Bioeng; 2017 Sep; 114(9):1946-1958. PubMed ID: 28464284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols.
    Su H; Lin J; Wang G
    Sci Rep; 2016 Dec; 6():39543. PubMed ID: 27996038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae.
    Lee KM; Kim SK; Lee YG; Park KH; Seo JH
    Bioresour Technol; 2018 Nov; 268():271-277. PubMed ID: 30081287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growing duckweed for biofuel production: a review.
    Cui W; Cheng JJ
    Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():16-23. PubMed ID: 24985498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced biofuel production by the yeast Saccharomyces cerevisiae.
    Buijs NA; Siewers V; Nielsen J
    Curr Opin Chem Biol; 2013 Jun; 17(3):480-8. PubMed ID: 23628723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of microorganisms for the production of higher alcohols.
    Choi YJ; Lee J; Jang YS; Lee SY
    mBio; 2014 Sep; 5(5):e01524-14. PubMed ID: 25182323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.
    Kuroda K; Ueda M
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.
    Espinosa Vidal E; de Morais MA; François JM; de Billerbeck GM
    Yeast; 2015 Jan; 32(1):47-56. PubMed ID: 25274068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of 2-methyl-1-butanol and 3-methyl-1-butanol in engineered Corynebacterium glutamicum.
    Vogt M; Brüsseler C; Ooyen JV; Bott M; Marienhagen J
    Metab Eng; 2016 Nov; 38():436-445. PubMed ID: 27746323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels.
    Atsumi S; Hanai T; Liao JC
    Nature; 2008 Jan; 451(7174):86-9. PubMed ID: 18172501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae.
    Si T; Luo Y; Xiao H; Zhao H
    Metab Eng; 2014 Mar; 22():60-8. PubMed ID: 24412568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.
    Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137.
    Shen N; Wang Q; Zhu J; Qin Y; Liao S; Li Y; Zhu Q; Jin Y; Du L; Huang R
    Bioresour Technol; 2016 Jul; 211():307-12. PubMed ID: 27023386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enriching the Production of 2-Methyl-1-Butanol in Fermentation Process Using Corynebacterium crenatum.
    Su H; Chen H; Lin J
    Curr Microbiol; 2020 Aug; 77(8):1699-1706. PubMed ID: 32300924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced Production of Higher Alcohols by Saccharomyces cerevisiae in Red Wine Fermentation by Simultaneously Overexpressing BAT1 and Deleting BAT2.
    Ma L; Huang S; Du L; Tang P; Xiao D
    J Agric Food Chem; 2017 Aug; 65(32):6936-6942. PubMed ID: 28721728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis.
    Hammer SK; Avalos JL
    Metab Eng; 2017 Nov; 44():302-312. PubMed ID: 29037781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.