BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 25889896)

  • 1. Rho regulation: DLC proteins in space and time.
    Braun AC; Olayioye MA
    Cell Signal; 2015 Aug; 27(8):1643-51. PubMed ID: 25889896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms for spatiotemporal regulation of Rho-GTPase signaling at synapses.
    Duman JG; Mulherkar S; Tu YK; X Cheng J; Tolias KF
    Neurosci Lett; 2015 Aug; 601():4-10. PubMed ID: 26003445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive regulation of Rho GTPase activity by RhoGDIs as a result of their direct interaction with GAPs.
    Ota T; Maeda M; Okamoto M; Tatsuka M
    BMC Syst Biol; 2015 Jan; 9():3. PubMed ID: 25628036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The STAR of the DLC family.
    El-Sitt S; El-Sibai M
    J Recept Signal Transduct Res; 2013; 33(1):10-3. PubMed ID: 23316797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for Rho GTPase signaling specificity.
    Karnoub AE; Symons M; Campbell SL; Der CJ
    Breast Cancer Res Treat; 2004 Mar; 84(1):61-71. PubMed ID: 14999155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of deleted in liver cancer 1 tumor suppressor by protein-protein interactions and phosphorylation.
    Ko FC; Ping Yam JW
    Int J Cancer; 2014 Jul; 135(2):264-9. PubMed ID: 24114040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Rho regulation: Molecular mechanisms controlling the GAP protein DLC3.
    Hendrick J; Olayioye MA
    Small GTPases; 2019 Jan; 10(1):13-19. PubMed ID: 27849131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of the Rho GTPase signaling.
    Hakoshima T; Shimizu T; Maesaki R
    J Biochem; 2003 Sep; 134(3):327-31. PubMed ID: 14561717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DLC-1 tumor suppressor regulates CD105 expression on human non-small cell lung carcinoma cells through inhibiting TGF-β1 signaling.
    Zhang K; Na T; Ge F; Yuan BZ
    Exp Cell Res; 2020 Jan; 386(2):111732. PubMed ID: 31770531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAP-independent functions of DLC1 in metastasis.
    Barras D; Widmann C
    Cancer Metastasis Rev; 2014 Mar; 33(1):87-100. PubMed ID: 24338004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rho GEFs and GAPs: emerging integrators of extracellular matrix signaling.
    Kutys ML; Yamada KM
    Small GTPases; 2015; 6(1):16-9. PubMed ID: 25862162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Rho-specific GAP protein DLC3 coordinates endocytic membrane trafficking.
    Braun AC; Hendrick J; Eisler SA; Schmid S; Hausser A; Olayioye MA
    J Cell Sci; 2015 Apr; 128(7):1386-99. PubMed ID: 25673874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy?
    Lazer G; Katzav S
    Cell Signal; 2011 Jun; 23(6):969-79. PubMed ID: 21044680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs.
    Bai Y; Xiang X; Liang C; Shi L
    Biomed Res Int; 2015; 2015():632450. PubMed ID: 25879033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rho GTPase expression in tumourigenesis: evidence for a significant link.
    Gómez del Pulgar T; Benitah SA; Valerón PF; Espina C; Lacal JC
    Bioessays; 2005 Jun; 27(6):602-13. PubMed ID: 15892119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DLC1 is the principal biologically-relevant down-regulated DLC family member in several cancers.
    Wang D; Qian X; Rajaram M; Durkin ME; Lowy DR
    Oncotarget; 2016 Jul; 7(29):45144-45157. PubMed ID: 27174913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical assays to characterize Rho GTPases.
    Jaiswal M; Dubey BN; Koessmeier KT; Gremer L; Ahmadian MR
    Methods Mol Biol; 2012; 827():37-58. PubMed ID: 22144266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular perturbation strategies to examine spatiotemporal features of Rho GEF and Rho GTPase activity in living cells.
    Goedhart J; van Unen J
    Small GTPases; 2019 May; 10(3):178-186. PubMed ID: 28521592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Rho signaling pathways in interleukin-2-stimulated human T-lymphocytes.
    Mzali R; Seguin L; Liot C; Auger A; Pacaud P; Loirand G; Thibault C; Pierre J; Bertoglio J
    FASEB J; 2005 Nov; 19(13):1911-3. PubMed ID: 16148026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma.
    Wong CM; Yam JW; Ching YP; Yau TO; Leung TH; Jin DY; Ng IO
    Cancer Res; 2005 Oct; 65(19):8861-8. PubMed ID: 16204057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.