BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

798 related articles for article (PubMed ID: 25890133)

  • 1. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Biering-Sørensen F; Nielsen JB
    Prog Brain Res; 2015; 218():79-101. PubMed ID: 25890133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Conway BA; Knudsen H; Biering-Sørensen F; Nielsen JB
    J Neurophysiol; 2010 Aug; 104(2):1167-76. PubMed ID: 20554839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional implications of corticospinal tract impairment on gait after spinal cord injury.
    Barthélemy D; Knudsen H; Willerslev-Olsen M; Lundell H; Nielsen JB; Biering-Sørensen F
    Spinal Cord; 2013 Nov; 51(11):852-6. PubMed ID: 23939192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ankle paresis in incomplete spinal cord injury: relation to corticospinal conductivity and ambulatory capacity.
    Wirth B; van Hedel HJ; Curt A
    J Clin Neurophysiol; 2008 Aug; 25(4):210-7. PubMed ID: 18677185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slowed down: response time deficits in well-recovered subjects with incomplete spinal cord injury.
    Labruyère R; Zimmerli M; van Hedel HJ
    Arch Phys Med Rehabil; 2013 Oct; 94(10):2020-6. PubMed ID: 23602883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury.
    Thomas SL; Gorassini MA
    J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal estimation of intramuscular Tibialis Anterior coherence during subacute spinal cord injury: relationship with neurophysiological, functional and clinical outcome measures.
    Bravo-Esteban E; Taylor J; Aleixandre M; Simón-Martínez C; Torricelli D; Pons JL; Avila-Martín G; Galán-Arriero I; Gómez-Soriano J
    J Neuroeng Rehabil; 2017 Jun; 14(1):58. PubMed ID: 28619087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitation of descending excitatory and spinal inhibitory networks from training of endurance and precision walking in participants with incomplete spinal cord injury.
    Zewdie ET; Roy FD; Yang JF; Gorassini MA
    Prog Brain Res; 2015; 218():127-55. PubMed ID: 25890135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals.
    Lundell H; Christensen MS; Barthélemy D; Willerslev-Olsen M; Biering-Sørensen F; Nielsen JB
    Neuroimage; 2011 Jan; 54(2):1254-61. PubMed ID: 20851198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vestibulospinal responses in motor incomplete spinal cord injury.
    Liechti M; Müller R; Lam T; Curt A
    Clin Neurophysiol; 2008 Dec; 119(12):2804-12. PubMed ID: 18842452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operant conditioning of the tibialis anterior motor evoked potential in people with and without chronic incomplete spinal cord injury.
    Thompson AK; Cote RH; Sniffen JM; Brangaccio JA
    J Neurophysiol; 2018 Dec; 120(6):2745-2760. PubMed ID: 30207863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study.
    Okawara H; Sawada T; Matsubayashi K; Sugai K; Tsuji O; Nagoshi N; Matsumoto M; Nakamura M
    Spinal Cord; 2020 May; 58(5):520-527. PubMed ID: 31831847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imbalanced Corticospinal and Reticulospinal Contributions to Spasticity in Humans with Spinal Cord Injury.
    Sangari S; Perez MA
    J Neurosci; 2019 Oct; 39(40):7872-7881. PubMed ID: 31413076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA; Gorassini MA
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in corticospinal function and ankle motor control during recovery from incomplete spinal cord injury.
    Wirth B; Van Hedel HJ; Curt A
    J Neurotrauma; 2008 May; 25(5):467-78. PubMed ID: 18419251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
    Urbin MA; Ozdemir RA; Tazoe T; Perez MA
    J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of coil orientation on motor-evoked potentials in humans with tetraplegia.
    Jo HJ; Di Lazzaro V; Perez MA
    J Physiol; 2018 Oct; 596(20):4909-4921. PubMed ID: 29923194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of transcranial magnetic stimulation for investigating transmission in descending motor tracts in the rat.
    Nielsen JB; Perez MA; Oudega M; Enriquez-Denton M; Aimonetti JM
    Eur J Neurosci; 2007 Feb; 25(3):805-14. PubMed ID: 17328776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait training induced change in corticomotor excitability in patients with chronic stroke.
    Yen CL; Wang RY; Liao KK; Huang CC; Yang YR
    Neurorehabil Neural Repair; 2008; 22(1):22-30. PubMed ID: 17507641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD; Yang JF; Gorassini MA
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.