These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 25890595)
1. Fact versus artifact: avoiding erroneous estimates of sulfated glycosaminoglycan content using the dimethylmethylene blue colorimetric assay for tissue-engineered constructs. Zheng CH; Levenston ME Eur Cell Mater; 2015 Apr; 29():224-36; discussion 236. PubMed ID: 25890595 [TBL] [Abstract][Full Text] [Related]
2. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Vinardell T; Sheehy EJ; Buckley CT; Kelly DJ Tissue Eng Part A; 2012 Jun; 18(11-12):1161-70. PubMed ID: 22429262 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Wu SC; Chang JK; Wang CK; Wang GJ; Ho ML Biomaterials; 2010 Feb; 31(4):631-40. PubMed ID: 19819543 [TBL] [Abstract][Full Text] [Related]
4. Studies on the quantification of proteoglycans by the dimethylmethylene blue dye-binding method. Specificity, quantitation in synovial lavage fluid, and automation. Dey P; Saphos CA; McDonnell J; Moore VL Connect Tissue Res; 1992; 28(4):317-24. PubMed ID: 1284787 [TBL] [Abstract][Full Text] [Related]
5. Assessment of three variations of the 1,9-dimethylmethylene blue assay for measurement of sulfated glycosaminoglycan concentrations in equine synovial fluid. Oke SL; Hurtig MB; Keates RA; Wright JR; Lumsden JH Am J Vet Res; 2003 Jul; 64(7):900-6. PubMed ID: 12856776 [TBL] [Abstract][Full Text] [Related]
6. Development of a solid-phase assay for measurement of sulfated glycosaminoglycan concentrations in equine synovial fluid. Oke SL; Hurtig MB; Keates RA; Wright JR Am J Vet Res; 2003 Jul; 64(7):894-9. PubMed ID: 12856775 [TBL] [Abstract][Full Text] [Related]
7. The Dimethylmethylene Blue Assay (DMMB) for the Quantification of Sulfated Glycosaminoglycans. Ladner YD; Alini M; Armiento AR Methods Mol Biol; 2023; 2598():115-121. PubMed ID: 36355288 [TBL] [Abstract][Full Text] [Related]
8. Nutrient channels and stirring enhanced the composition and stiffness of large cartilage constructs. Cigan AD; Nims RJ; Albro MB; Vunjak-Novakovic G; Hung CT; Ateshian GA J Biomech; 2014 Dec; 47(16):3847-54. PubMed ID: 25458579 [TBL] [Abstract][Full Text] [Related]
9. The basis and applicability of the dimethylmethylene blue binding assay for sulfated glycosaminoglycans. Templeton DM Connect Tissue Res; 1988; 17(1):23-32. PubMed ID: 3133157 [TBL] [Abstract][Full Text] [Related]
10. Meniscus is more susceptible than cartilage to catabolic and anti-anabolic effects of adipokines. Nishimuta JF; Levenston ME Osteoarthritis Cartilage; 2015 Sep; 23(9):1551-62. PubMed ID: 25917638 [TBL] [Abstract][Full Text] [Related]
11. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Awad HA; Wickham MQ; Leddy HA; Gimble JM; Guilak F Biomaterials; 2004 Jul; 25(16):3211-22. PubMed ID: 14980416 [TBL] [Abstract][Full Text] [Related]
12. Contrast enhanced computed tomography for real-time quantification of glycosaminoglycans in cartilage tissue engineered constructs. Garcia JP; Longoni A; Gawlitta D; J W P Rosenberg A; Grinstaff MW; Töyräs J; Weinans H; Creemers LB; Pouran B Acta Biomater; 2019 Dec; 100():202-212. PubMed ID: 31580960 [TBL] [Abstract][Full Text] [Related]
13. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Choi JW; Choi BH; Park SH; Pai KS; Li TZ; Min BH; Park SR Artif Organs; 2013 Jul; 37(7):648-55. PubMed ID: 23495957 [TBL] [Abstract][Full Text] [Related]
14. Engineering articular cartilage-like grafts by self-assembly of infrapatellar fat pad-derived stem cells. Mesallati T; Buckley CT; Kelly DJ Biotechnol Bioeng; 2014 Aug; 111(8):1686-98. PubMed ID: 25097913 [TBL] [Abstract][Full Text] [Related]
15. Assessment of fixed charge density in regenerated cartilage by Gd-DTPA-enhanced MRI. Miyata S; Homma K; Numano T; Furukawa K; Tateishi T; Ushida T Magn Reson Med Sci; 2006 Jul; 5(2):73-8. PubMed ID: 17008763 [TBL] [Abstract][Full Text] [Related]
16. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells. Luo L; Thorpe SD; Buckley CT; Kelly DJ Biomed Mater; 2015 Sep; 10(5):055011. PubMed ID: 26391756 [TBL] [Abstract][Full Text] [Related]
17. Hyaluronan size alters chondrogenesis of adipose-derived stem cells via the CD44/ERK/SOX-9 pathway. Wu SC; Chen CH; Wang JY; Lin YS; Chang JK; Ho ML Acta Biomater; 2018 Jan; 66():224-237. PubMed ID: 29128538 [TBL] [Abstract][Full Text] [Related]
18. Tissue-engineered human nasal septal cartilage using the alginate-recovered-chondrocyte method. Chia SH; Schumacher BL; Klein TJ; Thonar EJ; Masuda K; Sah RL; Watson D Laryngoscope; 2004 Jan; 114(1):38-45. PubMed ID: 14709992 [TBL] [Abstract][Full Text] [Related]
19. Characterization of engineered cartilage constructs using multiexponential T₂ relaxation analysis and support vector regression. Irrechukwu ON; Reiter DA; Lin PC; Roque RA; Fishbein KW; Spencer RG Tissue Eng Part C Methods; 2012 Jun; 18(6):433-43. PubMed ID: 22166112 [TBL] [Abstract][Full Text] [Related]
20. Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo reference standards. van Tiel J; Siebelt M; Reijman M; Bos PK; Waarsing JH; Zuurmond AM; Nasserinejad K; van Osch GJ; Verhaar JA; Krestin GP; Weinans H; Oei EH Osteoarthritis Cartilage; 2016 Jun; 24(6):1012-20. PubMed ID: 26851449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]