These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25890996)

  • 1. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications.
    Li M; Xiao Y; Zhang Z; Yu J
    ACS Appl Mater Interfaces; 2015 May; 7(17):9157-68. PubMed ID: 25890996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Strength Die-Attach Joint Formation by Pressureless Sintering of Organic Amine Modified Ag Nanoparticle Paste.
    Shen X; Li J; Xi S
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging.
    Ji H; Zhou J; Liang M; Lu H; Li M
    Ultrason Sonochem; 2018 Mar; 41():375-381. PubMed ID: 29137764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of conductive silver paste using bimodal particles.
    Han HG; Seo DS; Lee JK
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5576-80. PubMed ID: 19198502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics.
    Deng S; Zhang X; Xiao GD; Zhang K; He X; Xin S; Liu X; Zhong A; Chai Y
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33910177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.
    Liu M; Ma Y; Wu H; Wang RY
    ACS Nano; 2015 Feb; 9(2):1341-51. PubMed ID: 25610944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low Sintering Temperature Nano-Silver Pastes with High Bonding Strength by Adding Silver 2-Ethylhexanoate.
    Hsu SL; Chen YT; Chen ML; Chen IG
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications.
    Yoon JW; Back JH
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Cu@Ag Micro/Nanoparticle Hybrid Paste and Its Rapid Sintering Technique via Electromagnetic Induction for High-Power Electronics.
    Wu Z; Liu W; Feng J; Wen Z; Zhang X; Wang X; Wang C; Tian Y
    ACS Omega; 2023 Aug; 8(34):31021-31029. PubMed ID: 37663465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of lead-free frit on conductivity of nanoparticles-aided silver paste.
    Park SH; Seo DS; Lee JK
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5331-6. PubMed ID: 19198449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Temperature and Low-Pressure Cu-Cu Bonding by Highly Sinterable Cu Nanoparticle Paste.
    Li J; Yu X; Shi T; Cheng C; Fan J; Cheng S; Liao G; Tang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):255. PubMed ID: 28384997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag-NPs/MWCNT composite-modified silver-epoxy paste with improved thermal conductivity.
    Li Y; Gan G; Huang Y; Yu X; Cheng J; Liu C
    RSC Adv; 2019 Jul; 9(36):20663-20669. PubMed ID: 35515560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles.
    Zhang R; Lin W; Moon KS; Wong CP
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2637-45. PubMed ID: 20735013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Fabrication of 3D Nanohierarchical Nickel Nanomace Array To Sinter with Silver NPs and the Interfacial Analysis.
    Zhou W; Zheng Z; Wang C; Wang Z; An R
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4798-4807. PubMed ID: 28080029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ag-Sn bimetallic nanoparticles paste for high temperature service in power devices.
    Yu F; Wang K; Liu J; Fu X; Chen H; Li M
    Nanotechnology; 2020 Aug; 31(34):345204. PubMed ID: 32403094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Grain Structure of Gold Plating Layer on Environmental Reliability of Sintered Ag-Au Joints.
    Ma Y; Li X; Zhang H
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Silver-Doped (Bi,Sb)₂Te₃ Thermoelectric Film Prepared from Ag Nanoparticles/Bi-Sb-Te Pastes.
    Cho YM; Gwon GH; Kim SH; Kim DW; Choe J; Kim KT
    J Nanosci Nanotechnol; 2019 Jul; 19(7):4270-4275. PubMed ID: 30765004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.