BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 25891198)

  • 21. Dependent and multiple scattering in transmission and backscattering optical coherence tomography.
    Nguyen VD; Faber DJ; van der Pol E; van Leeuwen TG; Kalkman J
    Opt Express; 2013 Dec; 21(24):29145-56. PubMed ID: 24514466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns.
    Sarkar S; Gurjarpadhye AA; Rylander CG; Nichole Rylander M
    J Biomed Opt; 2011 May; 16(5):051304. PubMed ID: 21639564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating optical properties in layered tissues by use of the Born approximation of the radiative transport equation.
    Kim AD; Hayakawa C; Venugopalan V
    Opt Lett; 2006 Apr; 31(8):1088-90. PubMed ID: 16625912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multimodal optical setup based on spectrometer and cameras combination for biological tissue characterization with spatially modulated illumination.
    Baruch D; Abookasis D
    J Biomed Opt; 2017 Apr; 22(4):46007. PubMed ID: 28425559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms.
    Palmer GM; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions.
    Friebel M; Roggan A; Müller G; Meinke M
    J Biomed Opt; 2006; 11(3):34021. PubMed ID: 16822070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic light scattering optical coherence tomography.
    Lee J; Wu W; Jiang JY; Zhu B; Boas DA
    Opt Express; 2012 Sep; 20(20):22262-77. PubMed ID: 23037374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the tumor tissue optical properties during and after photodynamic therapy using inverse Monte Carlo method and double integrating sphere between 350 and 1000 nm.
    Honda N; Ishii K; Terada T; Nanjo T; Awazu K
    J Biomed Opt; 2011 May; 16(5):058003. PubMed ID: 21639587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple two-layer reflectance model for biological tissue applications.
    Mantis G; Zonios G
    Appl Opt; 2009 Jun; 48(18):3490-6. PubMed ID: 19543359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography.
    Sukowski U; Schubert F; Grosenick D; Rinneberg H
    Phys Med Biol; 1996 Sep; 41(9):1823-44. PubMed ID: 8884914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative analysis of radiative transfer approaches for calculation of plane transmittance and diffuse attenuation coefficient of plane-parallel light scattering layers.
    Sokoletsky LG; Budak VP; Shen F; Kokhanovsky AA
    Appl Opt; 2014 Jan; 53(3):459-68. PubMed ID: 24514134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.
    Dam JS; Yavari N; Sørensen S; Andersson-Engels S
    Appl Opt; 2005 Jul; 44(20):4281-90. PubMed ID: 16045216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double-integrating-sphere system at the National Institute of Standards and Technology in support of measurement standards for the determination of optical properties of tissue-mimicking phantoms.
    Lemaillet P; Bouchard JP; Hwang J; Allen DW
    J Biomed Opt; 2015; 20(12):121310. PubMed ID: 26505172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements.
    Watté R; Do Trong NN; Aernouts B; Erkinbaev C; De Baerdemaeker J; Nicolaï B; Saeys W
    Opt Express; 2013 Dec; 21(26):32630-42. PubMed ID: 24514857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique.
    Simpson CR; Kohl M; Essenpreis M; Cope M
    Phys Med Biol; 1998 Sep; 43(9):2465-78. PubMed ID: 9755939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of the optical properties of anisotropic biological media using an isotropic diffusion model.
    Kienle A; Wetzel C; Bassi A; Comelli D; Taroni P; Pifferi A
    J Biomed Opt; 2007; 12(1):014026. PubMed ID: 17343501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Method for recovering quantitative broadband diffuse optical spectra from layered media.
    Li A; Kwong R; Cerussi A; Merritt S; Hayakawa C; Tromberg B
    Appl Opt; 2007 Jul; 46(21):4828-33. PubMed ID: 17609733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of scattering changes using polarization-sensitive optical coherence tomography.
    Lee SW; Kang JH; Yoo JY; Kang MS; Oh JT; Kim BM
    J Biomed Opt; 2008; 13(5):054032. PubMed ID: 19021412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime.
    Almasian M; Bosschaart N; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2015; 20(12):121314. PubMed ID: 26720868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bulk optical parameters of porcine skin dermis at eight wavelengths from 325 to 1557 nm.
    Ma X; Lu JQ; Ding H; Hu XH
    Opt Lett; 2005 Feb; 30(4):412-4. PubMed ID: 15762445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.