BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 25891198)

  • 41. Dispersion-based optical coherence tomography OCT measurement of mixture concentrations.
    Bagherzadeh SM; Grajciar B; Hitzenberger CK; Pircher M; Fercher AF
    Opt Lett; 2007 Oct; 32(20):2924-6. PubMed ID: 17938654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model.
    Seo I; You JS; Hayakawa CK; Venugopalan V
    J Biomed Opt; 2007; 12(1):014030. PubMed ID: 17343505
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A method for determination of the absorption and scattering properties interstitially in turbid media.
    Dimofte A; Finlay JC; Zhu TC
    Phys Med Biol; 2005 May; 50(10):2291-311. PubMed ID: 15876668
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of the scattering coefficients of turbid media using angle-resolved optical frequency-domain imaging.
    Desjardins AE; Vakoc BJ; Bilenca A; Tearney GJ; Bouma BE
    Opt Lett; 2007 Jun; 32(11):1560-2. PubMed ID: 17546188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance.
    Laidevant A; da Silva A; Berger M; Dinten JM
    Appl Opt; 2006 Jul; 45(19):4756-64. PubMed ID: 16799691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sources of errors in spatial frequency domain imaging of scattering media.
    Bodenschatz N; Brandes A; Liemert A; Kienle A
    J Biomed Opt; 2014 Jul; 19(7):071405. PubMed ID: 24474551
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous strain and coherent imaging using coupled photorefractive holography and shearography through scattering media.
    Rosso V; Béland R; Lecler S; Renotte Y; Habraken S; Lion Y; Charette P
    J Biomed Opt; 2008; 13(4):044010. PubMed ID: 19021338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology.
    Wood MF; Guo X; Vitkin IA
    J Biomed Opt; 2007; 12(1):014029. PubMed ID: 17343504
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system.
    Fang ZH; Fu XP; He XM
    J Zhejiang Univ Sci B; 2016 Jun; 17(6):484-92. PubMed ID: 27256682
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements.
    Dombrovsky L; Randrianalisoa J; Baillis D
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):91-8. PubMed ID: 16478064
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm.
    Beek JF; Blokland P; Posthumus P; Aalders M; Pickering JW; Sterenborg HJ; van Gemert MJ
    Phys Med Biol; 1997 Nov; 42(11):2255-61. PubMed ID: 9394410
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical phantoms of varying geometry based on thin building blocks with controlled optical properties.
    de Bruin DM; Bremmer RH; Kodach VM; de Kinkelder R; van Marle J; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2010; 15(2):025001. PubMed ID: 20459242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering.
    Wróbel MS; Popov AP; Bykov AV; Tuchin VV; Jędrzejewska-Szczerska M
    Biomed Opt Express; 2016 Jun; 7(6):2088-94. PubMed ID: 27375928
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography.
    Kinnunen M; Myllylä R; Vainio S
    J Biomed Opt; 2008; 13(2):021111. PubMed ID: 18465960
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recipes to make organic phantoms for diffusive optical spectroscopy.
    Quarto G; Pifferi A; Bargigia I; Farina A; Cubeddu R; Taroni P
    Appl Opt; 2013 Apr; 52(11):2494-502. PubMed ID: 23670779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using an oblique incident laser beam to measure the optical properties of stomach mucosa/submucosa tissue.
    Wei HJ; Xing D; He BH; Gu HM; Wu GY; Chen XM
    BMC Gastroenterol; 2009 Aug; 9():64. PubMed ID: 19715589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography.
    Chhetri RK; Kozek KA; Johnston-Peck AC; Tracy JB; Oldenburg AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):040903. PubMed ID: 21599108
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phase function measurements on nonspherical scatterers using a two-axis goniometer.
    Forster FK; Kienle A; Michels R; Hibst R
    J Biomed Opt; 2006; 11(2):024018. PubMed ID: 16674208
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state.
    Angelsky OV; Ushenko AG; Ushenko YG
    J Biomed Opt; 2005; 10(6):060502. PubMed ID: 16409065
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation.
    Bosschaart N; Mentink R; Kok JH; van Leeuwen TG; Aalders MC
    J Biomed Opt; 2011 Sep; 16(9):097003. PubMed ID: 21950938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.