These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 25891221)

  • 21. A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation.
    Ito HT; Zhang SJ; Witter MP; Moser EI; Moser MB
    Nature; 2015 Jun; 522(7554):50-5. PubMed ID: 26017312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Major diencephalic inputs to the hippocampus: supramammillary nucleus and nucleus reuniens. Circuitry and function.
    Vertes RP
    Prog Brain Res; 2015; 219():121-44. PubMed ID: 26072237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia.
    Quidé Y; Morris RW; Shepherd AM; Rowland JE; Green MJ
    Schizophr Res; 2013 Nov; 150(2-3):468-75. PubMed ID: 24016726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disruption of gamma-delta relationship related to working memory deficits in first-episode psychosis.
    Missonnier P; Prévot A; Herrmann FR; Ventura J; Padée A; Merlo MCG
    J Neural Transm (Vienna); 2020 Jan; 127(1):103-115. PubMed ID: 31858267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Importance of the ventral midline thalamus in driving hippocampal functions.
    Cassel JC; Pereira de Vasconcelos A
    Prog Brain Res; 2015; 219():145-61. PubMed ID: 26072238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleus reuniens transiently synchronizes memory networks at beta frequencies.
    Jayachandran M; Viena TD; Garcia A; Veliz AV; Leyva S; Roldan V; Vertes RP; Allen TA
    Nat Commun; 2023 Jul; 14(1):4326. PubMed ID: 37468487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Working memory functioning in schizophrenia patients and their first-degree relatives: cognitive functioning shedding light on etiology.
    Conklin HM; Curtis CE; Calkins ME; Iacono WG
    Neuropsychologia; 2005; 43(6):930-42. PubMed ID: 15716163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dopamine D4 Receptor Agonist Drastically Increases Delta Activity in the Thalamic Nucleus Reuniens: Potential Role in Communication between Prefrontal Cortex and Hippocampus.
    Kuang J; Kafetzopoulos V; Deth R; Kocsis B
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impaired working memory for visual motion direction in schizophrenia: Absence of recency effects and association with psychopathology.
    Stäblein M; Sieprath L; Knöchel C; Landertinger A; Schmied C; Ghinea D; Mayer JS; Bittner RA; Reif A; Oertel-Knöchel V
    Neuropsychology; 2016 Sep; 30(6):653-63. PubMed ID: 26752124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior.
    Dolleman-van der Weel MJ; Griffin AL; Ito HT; Shapiro ML; Witter MP; Vertes RP; Allen TA
    Learn Mem; 2019 Jul; 26(7):191-205. PubMed ID: 31209114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of NMDARs in the Nucleus Reticularis of the Thalamus Produces Delta Frequency Bursting.
    Zhang Y; Llinas RR; Lisman JE
    Front Neural Circuits; 2009; 3():20. PubMed ID: 20057928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of reversible inactivation of reuniens nucleus on memory processing in passive avoidance task.
    Davoodi FG; Motamedi F; Akbari E; Ghanbarian E; Jila B
    Behav Brain Res; 2011 Aug; 221(1):1-6. PubMed ID: 21354215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bidirectional optogenetic modulation of prefrontal-hippocampal connectivity in pain-related working memory deficits.
    Cardoso-Cruz H; Paiva P; Monteiro C; Galhardo V
    Sci Rep; 2019 Jul; 9(1):10980. PubMed ID: 31358862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optogenetic stimulation: Understanding memory and treating deficits.
    Barnett SC; Perry BAL; Dalrymple-Alford JC; Parr-Brownlie LC
    Hippocampus; 2018 Jul; 28(7):457-470. PubMed ID: 29742814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visuospatial imagery and working memory in schizophrenia.
    Matthews NL; Collins KP; Thakkar KN; Park S
    Cogn Neuropsychiatry; 2014; 19(1):17-35. PubMed ID: 23701275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat.
    Su HS; Bentivoglio M
    J Comp Neurol; 1990 Jul; 297(4):582-93. PubMed ID: 1696591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia.
    Senkowski D; Gallinat J
    Biol Psychiatry; 2015 Jun; 77(12):1010-9. PubMed ID: 25847179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive pursuit association with deficits in working memory in psychosis.
    Moates AF; Ivleva EI; O'Neill HB; Krishna N; Cullum CM; Thaker GK; Tamminga CA
    Biol Psychiatry; 2012 Nov; 72(9):752-7. PubMed ID: 22554452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Ventral Midline Thalamus Mediates Hippocampal Spatial Information Processes upon Spatial Cue Changes.
    Jung D; Huh Y; Cho J
    J Neurosci; 2019 Mar; 39(12):2276-2290. PubMed ID: 30659088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Working memory and the psychopathology of schizophrenia].
    Walter H; Wolf RC
    Fortschr Neurol Psychiatr; 2008 May; 76 Suppl 1():S16-23. PubMed ID: 18461540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.