These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 25891388)
1. Mechanism of Nonpolar Model Substances to Inhibit Primary Gushing Induced by Hydrophobin HFBI. Shokribousjein Z; Riveros Galan D; Losada-Pérez P; Wagner P; Lammertyn J; Arghir I; Golreihan A; Verachtert H; Aydın AA; De Maeyer M; Titze J; Ilberg V; Derdelinckx G J Agric Food Chem; 2015 May; 63(18):4673-82. PubMed ID: 25891388 [TBL] [Abstract][Full Text] [Related]
2. Recent Advances in Fungal Hydrophobin Towards Using in Industry. Khalesi M; Gebruers K; Derdelinckx G Protein J; 2015 Aug; 34(4):243-55. PubMed ID: 26208665 [TBL] [Abstract][Full Text] [Related]
3. Heterologous expression and characterization of the hydrophobin HFBI in Pichia pastoris and evaluation of its contribution to the food industry. Niu B; Wang D; Yang Y; Xu H; Qiao M Amino Acids; 2012 Aug; 43(2):763-71. PubMed ID: 22038182 [TBL] [Abstract][Full Text] [Related]
4. Behavior of Trichoderma reesei hydrophobins in solution: interactions, dynamics, and multimer formation. Szilvay GR; Nakari-Setälä T; Linder MB Biochemistry; 2006 Jul; 45(28):8590-8. PubMed ID: 16834333 [TBL] [Abstract][Full Text] [Related]
5. Charge-based engineering of hydrophobin HFBI: effect on interfacial assembly and interactions. Lienemann M; Grunér MS; Paananen A; Siika-Aho M; Linder MB Biomacromolecules; 2015 Apr; 16(4):1283-92. PubMed ID: 25724119 [TBL] [Abstract][Full Text] [Related]
6. Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei. Askolin S; Linder M; Scholtmeijer K; Tenkanen M; Penttilä M; de Vocht ML; Wösten HA Biomacromolecules; 2006 Apr; 7(4):1295-301. PubMed ID: 16602752 [TBL] [Abstract][Full Text] [Related]
8. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins. Paananen A; Weich S; Szilvay GR; Leitner M; Tappura K; Ebner A J Biol Chem; 2021; 296():100728. PubMed ID: 33933454 [TBL] [Abstract][Full Text] [Related]
9. Purification, crystallization and preliminary X-ray diffraction analysis of the Trichoderma reesei hydrophobin HFBI. Askolin S; Turkenburg JP; Tenkanen M; Uotila S; Wilson KS; Penttilä M; Visuri K Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1903-5. PubMed ID: 15388947 [TBL] [Abstract][Full Text] [Related]
10. The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738 [TBL] [Abstract][Full Text] [Related]
11. Two crystal structures of Trichoderma reesei hydrophobin HFBI--the structure of a protein amphiphile with and without detergent interaction. Hakanpää J; Szilvay GR; Kaljunen H; Maksimainen M; Linder M; Rouvinen J Protein Sci; 2006 Sep; 15(9):2129-40. PubMed ID: 16882996 [TBL] [Abstract][Full Text] [Related]
12. Induced Fit in Protein Multimerization: The HFBI Case. Riccardi L; Mereghetti P PLoS Comput Biol; 2016 Nov; 12(11):e1005202. PubMed ID: 27832079 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled hydrophobin protein films at the air-water interface: structural analysis and molecular engineering. Szilvay GR; Paananen A; Laurikainen K; Vuorimaa E; Lemmetyinen H; Peltonen J; Linder MB Biochemistry; 2007 Mar; 46(9):2345-54. PubMed ID: 17297923 [TBL] [Abstract][Full Text] [Related]
14. Hydrophobins as aqueous lubricant additive for a soft sliding contact. Lee S; Røn T; Pakkanen KI; Linder M Colloids Surf B Biointerfaces; 2015 Jan; 125():264-9. PubMed ID: 25466456 [TBL] [Abstract][Full Text] [Related]
15. Surface properties of class ii hydrophobins from Trichoderma reesei and influence on bubble stability. Cox AR; Cagnol F; Russell AB; Izzard MJ Langmuir; 2007 Jul; 23(15):7995-8002. PubMed ID: 17580918 [TBL] [Abstract][Full Text] [Related]
16. Improved extraction and purification of the hydrophobin HFBI. Vereman J; Thysens T; Van Impe J; Derdelinckx G; Van de Voorde I Biotechnol J; 2021 Nov; 16(11):e2100245. PubMed ID: 34423900 [TBL] [Abstract][Full Text] [Related]
17. Heterologous expression of surface-active proteins from barley and filamentous fungi in Pichia pastoris and characterization of their contribution to beer gushing. Lutterschmid G; Muranyi M; Stübner M; Vogel RF; Niessen L Int J Food Microbiol; 2011 May; 147(1):17-25. PubMed ID: 21450361 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin. Niu B; Li B; Wang H; Guo R; Xu H; Qiao M; Li W Colloids Surf B Biointerfaces; 2017 Feb; 150():344-351. PubMed ID: 27842929 [TBL] [Abstract][Full Text] [Related]
19. Crystal structures of hydrophobin HFBII in the presence of detergent implicate the formation of fibrils and monolayer films. Kallio JM; Linder MB; Rouvinen J J Biol Chem; 2007 Sep; 282(39):28733-28739. PubMed ID: 17636262 [TBL] [Abstract][Full Text] [Related]
20. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins. Ren Q; Kwan AH; Sunde M Proteins; 2014 Jun; 82(6):990-1003. PubMed ID: 24218020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]