BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25891849)

  • 21. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing.
    Paramonov SE; Jun HW; Hartgerink JD
    J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ovalbumin Epitope SIINFEKL Self-Assembles into a Supramolecular Hydrogel.
    Kamalov M; Kählig H; Rentenberger C; Müllner ARM; Peterlik H; Becker CFW
    Sci Rep; 2019 Feb; 9(1):2696. PubMed ID: 30804439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation.
    Thornton K; Smith AM; Merry CL; Ulijn RV
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):660-4. PubMed ID: 19614571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH.
    Naskar J; Palui G; Banerjee A
    J Phys Chem B; 2009 Sep; 113(35):11787-92. PubMed ID: 19708711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogels Based on Ag
    Hu Y; Xie D; Wu Y; Lin N; Song A; Hao J
    Chemistry; 2017 Nov; 23(62):15721-15728. PubMed ID: 28833801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into the coassembly of hydrogelators and surfactants based on aromatic peptide amphiphiles.
    Fleming S; Debnath S; Frederix PW; Hunt NT; Ulijn RV
    Biomacromolecules; 2014 Apr; 15(4):1171-84. PubMed ID: 24568678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supramolecular architectures self-assembled from asymmetrical hetero cyclopeptides.
    Qin SY; Xu XD; Chen CS; Chen JX; Li ZY; Zhuo RX; Zhang XZ
    Macromol Rapid Commun; 2011 May; 32(9-10):758-64. PubMed ID: 21469242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of the chirality of short peptide supramolecular hydrogels in protein crystallogenesis.
    Conejero-Muriel M; Gavira JA; Pineda-Molina E; Belsom A; Bradley M; Moral M; García-López Durán Jde D; Luque González A; Díaz-Mochón JJ; Contreras-Montoya R; Martínez-Peragón Á; Cuerva JM; Álvarez de Cienfuegos L
    Chem Commun (Camb); 2015 Mar; 51(18):3862-5. PubMed ID: 25655841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembled chiral nanostructures of amphiphilic peptide: from single molecule to aggregate.
    Zhou T; Zhang Z; Zhang X; Wang C; Xu G; Yang Y
    J Pept Sci; 2017 Nov; 23(11):803-809. PubMed ID: 28812314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of counteranion on the chiral supramolecular assembly of alkynylplatinum(II) terpyridyl metallogels that are stabilised by Pt...Pt and pi-pi interactions.
    Tam AY; Wong KM; Yam VW
    Chemistry; 2009; 15(19):4775-8. PubMed ID: 19322773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smart oligopeptide gels: in situ formation and stabilization of gold and silver nanoparticles within supramolecular organogel networks.
    Ray S; Das AK; Banerjee A
    Chem Commun (Camb); 2006 Jul; (26):2816-8. PubMed ID: 17009473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polypeptide nanoribbon hydrogels assembled through multiple supramolecular interactions.
    Yan Y; de Keizer A; Martens AA; Oliveira CL; Pedersen JS; de Wolf FA; Drechsler M; Cohen Stuart MA; Besseling NA
    Langmuir; 2009 Nov; 25(22):12899-908. PubMed ID: 19735114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of PCL-b-PEO-b-PCL-based nanostructured and porous hydrogels.
    Kang J; Beers KJ
    Biomacromolecules; 2006 Feb; 7(2):453-8. PubMed ID: 16471916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and properties of cholesterol-based hydrogelators with varying hydrophilic terminals: biocompatibility and development of antibacterial soft nanocomposites.
    Dutta S; Kar T; Mandal D; Das PK
    Langmuir; 2013 Jan; 29(1):316-27. PubMed ID: 23214716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly of amphiphilic tripeptides with sequence-dependent nanostructure.
    Sahoo JK; Nazareth C; VandenBerg MA; Webber MJ
    Biomater Sci; 2017 Jul; 5(8):1526-1530. PubMed ID: 28518205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembling tripeptide forming water-bound channels and hydrogels.
    Parisi E; Adorinni S; Garcia AM; Kralj S; De Zorzi R; Marchesan S
    J Pept Sci; 2023 Nov; 29(11):e3524. PubMed ID: 37226306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pi-conjugated hydrogel based on an Fmoc-dipeptide naphthalene diimide semiconductor.
    Shao H; Parquette JR
    Chem Commun (Camb); 2010 Jun; 46(24):4285-7. PubMed ID: 20467689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Templating the self-assembly of pristine carbon nanostructures in water.
    Mba M; Jiménez AI; Moretto A
    Chemistry; 2014 Apr; 20(14):3888-93. PubMed ID: 24644105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin.
    Lin N; Dufresne A
    Biomacromolecules; 2013 Mar; 14(3):871-80. PubMed ID: 23347071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.