BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 25892072)

  • 21. Purification of high-throughput organic synthesis libraries by counter-current chromatography.
    Wagenaar FL; Hochlowski JE; Pan JY; Tu NP; Searle PA
    J Chromatogr A; 2009 May; 1216(19):4154-60. PubMed ID: 19108843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relevance of Frank's solvent classification as typically aqueous and typically non-aqueous to activities of firefly luciferase, alcohol dehydrogenase, and alpha-chymotrypsin in aqueous binaries.
    Fadnavis NW; Seshadri R; Sheelu G; Madhuri KV
    Arch Biochem Biophys; 2005 Jan; 433(2):454-65. PubMed ID: 15581602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elution mechanism of polypeptides in reversed-phase liquid chromatography based on the critical threshold of organic solvent to induce abrupt change in adsorption capacity to the column packing.
    Goda R; Sudo K
    Biomed Chromatogr; 2008 Jan; 22(1):81-91. PubMed ID: 17685410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of some organic solvents on oxidative phosphorylation in rat liver mitochondria: Choice of organic solvents.
    Syed M; Skonberg C; Hansen SH
    Toxicol In Vitro; 2013 Dec; 27(8):2135-41. PubMed ID: 24055894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile.
    Zanith CC; Pliego JR
    J Comput Aided Mol Des; 2015 Mar; 29(3):217-24. PubMed ID: 25398641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of short-chain alcohols versus acetonitrile in the surfactant-mediated reversed-phase liquid chromatographic separation of β-blockers.
    Ruiz-Ángel MJ; Torres-Lapasió JR; Carda-Broch S; García-Álvarez-Coque MC
    J Chromatogr A; 2010 Nov; 1217(45):7090-9. PubMed ID: 20934180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of organic solvents on the conformation and interaction of catalase and anticatalase antibodies.
    Rehan M; Younus H
    Int J Biol Macromol; 2006 May; 38(3-5):289-95. PubMed ID: 16677702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retention behaviour of imidazolium ionic liquid cations on 1.7 μm ethylene bridged hybrid silica column using acetonitrile-rich and water-rich mobile phases.
    Orentienė A; Olšauskaitė V; Vičkačkaitė V; Padarauskas A
    J Chromatogr A; 2011 Sep; 1218(39):6884-91. PubMed ID: 21871632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures.
    Almandoz MC; Sancho MI; Blanco SE
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():112-9. PubMed ID: 24044989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the chromatographic hydrophobicity index for ionisable solutes.
    Fuguet E; Ràfols C; Bosch E; Rosés M
    J Chromatogr A; 2007 Nov; 1173(1-2):110-9. PubMed ID: 17976634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-line solvent exchange system: Automation from extraction to analysis.
    Fornells E; Hilder EF; Shellie RA; Breadmore MC
    Anal Chim Acta; 2019 Jan; 1047():231-237. PubMed ID: 30567655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acetonitrile as solvent for protein interaction analysis.
    Arakawa T
    Int J Biol Macromol; 2018 Jul; 114():728-732. PubMed ID: 29605253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation of xanthines in hydro-organic and polar-organic elution modes on a titania stationary phase.
    Jaoudé MA; Lassalle Y; Randon J
    J Sep Sci; 2014 Mar; 37(5):536-42. PubMed ID: 24347554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive analysis of pharmaceutical products using simultaneous mixed-mode (ion-exchange/reversed-phase) and hydrophilic interaction liquid chromatography.
    Kazarian AA; Nesterenko PN; Soisungnoen P; Burakham R; Srijaranai S; Paull B
    J Sep Sci; 2014 Aug; 37(16):2138-44. PubMed ID: 24890905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasound-assisted extraction of capsaicinoids from peppers.
    Barbero GF; Liazid A; Palma M; Barroso CG
    Talanta; 2008 Jun; 75(5):1332-7. PubMed ID: 18585221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing detection sensitivity in gradient liquid chromatography via post-column refocusing and strong-solvent remobilization.
    De Vos J; Desmet G; Eeltink S
    J Chromatogr A; 2016 Jul; 1455():86-92. PubMed ID: 27286647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gradient separation of oligosaccharides and suppressing anomeric mutarotation with enhanced-fluidity liquid hydrophilic interaction chromatography.
    Bennett R; Olesik SV
    Anal Chim Acta; 2017 Apr; 960():151-159. PubMed ID: 28193358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Managing sample introduction problems in hydrophilic interaction liquid chromatography.
    Taylor MR; Kawakami J; McCalley DV
    J Chromatogr A; 2023 Jul; 1700():464006. PubMed ID: 37167803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Screening approach for chiral separation of pharmaceuticals IV. Polar organic solvent chromatography.
    Matthijs N; Maftouh M; Heyden YV
    J Chromatogr A; 2006 Apr; 1111(1):48-61. PubMed ID: 16483582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.