These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 25892072)

  • 21. Purification of high-throughput organic synthesis libraries by counter-current chromatography.
    Wagenaar FL; Hochlowski JE; Pan JY; Tu NP; Searle PA
    J Chromatogr A; 2009 May; 1216(19):4154-60. PubMed ID: 19108843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relevance of Frank's solvent classification as typically aqueous and typically non-aqueous to activities of firefly luciferase, alcohol dehydrogenase, and alpha-chymotrypsin in aqueous binaries.
    Fadnavis NW; Seshadri R; Sheelu G; Madhuri KV
    Arch Biochem Biophys; 2005 Jan; 433(2):454-65. PubMed ID: 15581602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elution mechanism of polypeptides in reversed-phase liquid chromatography based on the critical threshold of organic solvent to induce abrupt change in adsorption capacity to the column packing.
    Goda R; Sudo K
    Biomed Chromatogr; 2008 Jan; 22(1):81-91. PubMed ID: 17685410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of some organic solvents on oxidative phosphorylation in rat liver mitochondria: Choice of organic solvents.
    Syed M; Skonberg C; Hansen SH
    Toxicol In Vitro; 2013 Dec; 27(8):2135-41. PubMed ID: 24055894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile.
    Zanith CC; Pliego JR
    J Comput Aided Mol Des; 2015 Mar; 29(3):217-24. PubMed ID: 25398641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of short-chain alcohols versus acetonitrile in the surfactant-mediated reversed-phase liquid chromatographic separation of β-blockers.
    Ruiz-Ángel MJ; Torres-Lapasió JR; Carda-Broch S; García-Álvarez-Coque MC
    J Chromatogr A; 2010 Nov; 1217(45):7090-9. PubMed ID: 20934180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of organic solvents on the conformation and interaction of catalase and anticatalase antibodies.
    Rehan M; Younus H
    Int J Biol Macromol; 2006 May; 38(3-5):289-95. PubMed ID: 16677702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retention behaviour of imidazolium ionic liquid cations on 1.7 μm ethylene bridged hybrid silica column using acetonitrile-rich and water-rich mobile phases.
    Orentienė A; Olšauskaitė V; Vičkačkaitė V; Padarauskas A
    J Chromatogr A; 2011 Sep; 1218(39):6884-91. PubMed ID: 21871632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures.
    Almandoz MC; Sancho MI; Blanco SE
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():112-9. PubMed ID: 24044989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the chromatographic hydrophobicity index for ionisable solutes.
    Fuguet E; Ràfols C; Bosch E; Rosés M
    J Chromatogr A; 2007 Nov; 1173(1-2):110-9. PubMed ID: 17976634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-line solvent exchange system: Automation from extraction to analysis.
    Fornells E; Hilder EF; Shellie RA; Breadmore MC
    Anal Chim Acta; 2019 Jan; 1047():231-237. PubMed ID: 30567655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acetonitrile as solvent for protein interaction analysis.
    Arakawa T
    Int J Biol Macromol; 2018 Jul; 114():728-732. PubMed ID: 29605253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation of xanthines in hydro-organic and polar-organic elution modes on a titania stationary phase.
    Jaoudé MA; Lassalle Y; Randon J
    J Sep Sci; 2014 Mar; 37(5):536-42. PubMed ID: 24347554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive analysis of pharmaceutical products using simultaneous mixed-mode (ion-exchange/reversed-phase) and hydrophilic interaction liquid chromatography.
    Kazarian AA; Nesterenko PN; Soisungnoen P; Burakham R; Srijaranai S; Paull B
    J Sep Sci; 2014 Aug; 37(16):2138-44. PubMed ID: 24890905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasound-assisted extraction of capsaicinoids from peppers.
    Barbero GF; Liazid A; Palma M; Barroso CG
    Talanta; 2008 Jun; 75(5):1332-7. PubMed ID: 18585221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing detection sensitivity in gradient liquid chromatography via post-column refocusing and strong-solvent remobilization.
    De Vos J; Desmet G; Eeltink S
    J Chromatogr A; 2016 Jul; 1455():86-92. PubMed ID: 27286647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gradient separation of oligosaccharides and suppressing anomeric mutarotation with enhanced-fluidity liquid hydrophilic interaction chromatography.
    Bennett R; Olesik SV
    Anal Chim Acta; 2017 Apr; 960():151-159. PubMed ID: 28193358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Managing sample introduction problems in hydrophilic interaction liquid chromatography.
    Taylor MR; Kawakami J; McCalley DV
    J Chromatogr A; 2023 Jul; 1700():464006. PubMed ID: 37167803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Screening approach for chiral separation of pharmaceuticals IV. Polar organic solvent chromatography.
    Matthijs N; Maftouh M; Heyden YV
    J Chromatogr A; 2006 Apr; 1111(1):48-61. PubMed ID: 16483582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.