BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25892259)

  • 1. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells.
    Ratz M; Testa I; Hell SW; Jakobs S
    Sci Rep; 2015 Apr; 5():9592. PubMed ID: 25892259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RESOLFT Nanoscopy of Fixed Cells Using a Z-Domain Based Fusion Protein for Labelling.
    Ilgen P; Grotjohann T; Jans DC; Kilisch M; Hell SW; Jakobs S
    PLoS One; 2015; 10(9):e0136233. PubMed ID: 26375606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster.
    Schnorrenberg S; Grotjohann T; Vorbrüggen G; Herzig A; Hell SW; Jakobs S
    Elife; 2016 Jun; 5():. PubMed ID: 27355614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Live-cell RESOLFT nanoscopy of transgenic
    Schnorrenberg S; Ghareeb H; Frahm L; Grotjohann T; Jensen N; Teichmann T; Hell SW; Lipka V; Jakobs S
    Plant Direct; 2020 Sep; 4(9):e00261. PubMed ID: 32995700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. rsEGFP2 enables fast RESOLFT nanoscopy of living cells.
    Grotjohann T; Testa I; Reuss M; Brakemann T; Eggeling C; Hell SW; Jakobs S
    Elife; 2012 Dec; 1():e00248. PubMed ID: 23330067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing.
    Koch B; Nijmeijer B; Kueblbeck M; Cai Y; Walther N; Ellenberg J
    Nat Protoc; 2018 Jun; 13(6):1465-1487. PubMed ID: 29844520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins.
    Lavoie-Cardinal F; Jensen NA; Westphal V; Stiel AC; Chmyrov A; Bierwagen J; Testa I; Jakobs S; Hell SW
    Chemphyschem; 2014 Mar; 15(4):655-63. PubMed ID: 24449030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Positive Switching Fluorescent Protein Padron2 Enables Live-Cell Reversible Saturable Optical Linear Fluorescence Transitions (RESOLFT) Nanoscopy without Sequential Illumination Steps.
    Konen T; Stumpf D; Grotjohann T; Jansen I; Bossi M; Weber M; Jensen N; Hell SW; Jakobs S
    ACS Nano; 2021 Jun; 15(6):9509-9521. PubMed ID: 34019380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes.
    Bosch JA; Knight S; Kanca O; Zirin J; Yang-Zhou D; Hu Y; Rodiger J; Amador G; Bellen HJ; Perrimon N; Mohr SE
    Curr Protoc Mol Biol; 2020 Mar; 130(1):e112. PubMed ID: 31869524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system.
    Li J; Zhang BB; Ren YG; Gu SY; Xiang YH; Du JL
    Cell Res; 2015 May; 25(5):634-7. PubMed ID: 25849248
    [No Abstract]   [Full Text] [Related]  

  • 11. GMars-Q Enables Long-Term Live-Cell Parallelized Reversible Saturable Optical Fluorescence Transitions Nanoscopy.
    Wang S; Chen X; Chang L; Xue R; Duan H; Sun Y
    ACS Nano; 2016 Oct; 10(10):9136-9144. PubMed ID: 27541837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous Protein Tagging in Human Induced Pluripotent Stem Cells Using CRISPR/Cas9.
    Haupt A; Grancharova T; Arakaki J; Fuqua MA; Roberts B; Gunawardane RN
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging endogenous synaptic proteins in primary neurons at single-cell resolution using CRISPR/Cas9.
    Matsuda T; Oinuma I
    Mol Biol Cell; 2019 Oct; 30(22):2838-2855. PubMed ID: 31509485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Color 810 nm STED Nanoscopy of Living Cells with Endogenous SNAP-Tagged Fusion Proteins.
    Butkevich AN; Ta H; Ratz M; Stoldt S; Jakobs S; Belov VN; Hell SW
    ACS Chem Biol; 2018 Feb; 13(2):475-480. PubMed ID: 28933823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-sectioning with multi-sheet reversible saturable optical fluorescence transitions (RESOLFT) microscopy.
    Bodén A; Ollech D; York AG; Millett-Sikking A; Testa I
    Nat Methods; 2024 May; 21(5):882-888. PubMed ID: 38395993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of eGFP and Cre knockin rats by CRISPR/Cas9.
    Ma Y; Ma J; Zhang X; Chen W; Yu L; Lu Y; Bai L; Shen B; Huang X; Zhang L
    FEBS J; 2014 Sep; 281(17):3779-90. PubMed ID: 25039742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging genomic elements in living cells using CRISPR/Cas9.
    Chen B; Huang B
    Methods Enzymol; 2014; 546():337-54. PubMed ID: 25398348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT.
    Hoyer P; de Medeiros G; Balázs B; Norlin N; Besir C; Hanne J; Kräusslich HG; Engelhardt J; Sahl SJ; Hell SW; Hufnagel L
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3442-6. PubMed ID: 26984498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 allows efficient and complete knock-in of a destabilization domain-tagged essential protein in a human cell line, allowing rapid knockdown of protein function.
    Park A; Won ST; Pentecost M; Bartkowski W; Lee B
    PLoS One; 2014; 9(4):e95101. PubMed ID: 24743236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of bimolecular fluorescence complementation using rsEGFP2 for detection and super-resolution imaging of protein-protein interactions in live cells.
    Wang S; Ding M; Chen X; Chang L; Sun Y
    Biomed Opt Express; 2017 Jun; 8(6):3119-3131. PubMed ID: 28663931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.