These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 25892588)
1. Routes of uptake of diclofenac, fluoxetine, and triclosan into sediment-dwelling worms. Karlsson MV; Marshall S; Gouin T; Boxall AB Environ Toxicol Chem; 2016 Apr; 35(4):836-42. PubMed ID: 25892588 [TBL] [Abstract][Full Text] [Related]
2. Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms. Peng FJ; Diepens NJ; Pan CG; Bracewell SA; Ying GG; Salvito D; Selck H; Van den Brink PJ Aquat Toxicol; 2018 Sep; 202():117-125. PubMed ID: 30025380 [TBL] [Abstract][Full Text] [Related]
3. Bioaccumulation of triclocarban in Lumbriculus variegatus. Higgins CP; Paesani ZJ; Chalew TE; Halden RU Environ Toxicol Chem; 2009 Dec; 28(12):2580-6. PubMed ID: 19655999 [TBL] [Abstract][Full Text] [Related]
4. Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues. Lyndall J; Fuchsman P; Bock M; Barber T; Lauren D; Leigh K; Perruchon E; Capdevielle M Integr Environ Assess Manag; 2010 Jul; 6(3):419-40. PubMed ID: 20821705 [TBL] [Abstract][Full Text] [Related]
5. Novel Approach for Characterizing pH-Dependent Uptake of Ionizable Chemicals in Aquatic Organisms. Karlsson MV; Carter LJ; Agatz A; Boxall ABA Environ Sci Technol; 2017 Jun; 51(12):6965-6971. PubMed ID: 28553715 [TBL] [Abstract][Full Text] [Related]
6. Effects of triclosan on marine benthic and epibenthic organisms. Perron MM; Ho KT; Cantwell MG; Burgess RM; Pelletier MC Environ Toxicol Chem; 2012 Aug; 31(8):1861-6. PubMed ID: 22605471 [TBL] [Abstract][Full Text] [Related]
7. Bioaccumulation kinetics of polybrominated diphenyl ethers and decabromodiphenyl ethane from field-collected sediment in the oligochaete, Lumbriculus variegatus. Zhang B; Li H; Wei Y; You J Environ Toxicol Chem; 2013 Dec; 32(12):2711-8. PubMed ID: 24038512 [TBL] [Abstract][Full Text] [Related]
8. The bioaccumulation and effects of selenium in the oligochaete Lumbriculus variegatus via dissolved and dietary exposure routes. Xie L; Wu X; Chen H; Luo Y; Guo Z; Mu J; Blankson ER; Dong W; Klerks PL Aquat Toxicol; 2016 Sep; 178():1-7. PubMed ID: 27450235 [TBL] [Abstract][Full Text] [Related]
10. Bioaccumulation of atrazine and chlorpyrifos to Lumbriculus variegatus from lake sediments. Jantunen AP; Tuikka A; Akkanen J; Kukkonen JV Ecotoxicol Environ Saf; 2008 Nov; 71(3):860-8. PubMed ID: 18353437 [TBL] [Abstract][Full Text] [Related]
11. Bioaccumulation and Biotransformation of Triclosan and Galaxolide in the Freshwater Oligochaete Limnodrilus hoffmeisteri in a Water/Sediment Microcosm. Peng FJ; Ying GG; Pan CG; Selck H; Salvito D; Van den Brink PJ Environ Sci Technol; 2018 Aug; 52(15):8390-8398. PubMed ID: 30010330 [TBL] [Abstract][Full Text] [Related]
12. Bioavailability and biotransformation of sediment-associated pyrethroid insecticides in Lumbriculus variegatus. You J; Brennan A; Lydy MJ Chemosphere; 2009 Jun; 75(11):1477-82. PubMed ID: 19278716 [TBL] [Abstract][Full Text] [Related]
13. Bioaccumulation of PAHs from creosote-contaminated sediment in a laboratory-exposed freshwater oligochaete, Lumbriculus variegatus. Hyötyläinen T; Oikari A Chemosphere; 2004 Oct; 57(2):159-64. PubMed ID: 15294439 [TBL] [Abstract][Full Text] [Related]
14. A closer look at bioaccumulation of petroleum hydrocarbon mixtures in aquatic worms. Muijs B; Jonker MT Environ Toxicol Chem; 2010 Sep; 29(9):1943-9. PubMed ID: 20821651 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of PCB bioaccumulation by Lumbriculus variegatus in field-collected sediments. Burkhard LP; Mount DR; Highland TL; Hockett JR; Norberg-King T; Billa N; Hawthorne SB; Miller DJ; Grabanski CB Environ Toxicol Chem; 2013 Jul; 32(7):1495-503. PubMed ID: 23450771 [TBL] [Abstract][Full Text] [Related]
16. Bioaccumulation of perfluorochemicals in sediments by the aquatic oligochaete Lumbriculus variegatus. Higgins CP; McLeod PB; MacManus-Spencer LA; Luthy RG Environ Sci Technol; 2007 Jul; 41(13):4600-6. PubMed ID: 17695903 [TBL] [Abstract][Full Text] [Related]
17. Fate and uptake of pharmaceuticals in soil-earthworm systems. Carter LJ; Garman CD; Ryan J; Dowle A; Bergström E; Thomas-Oates J; Boxall AB Environ Sci Technol; 2014 May; 48(10):5955-63. PubMed ID: 24762061 [TBL] [Abstract][Full Text] [Related]
18. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part I: Relative importance of water and sediment as exposure routes. Ramskov T; Thit A; Croteau MN; Selck H Aquat Toxicol; 2015 Jul; 164():81-91. PubMed ID: 25935103 [TBL] [Abstract][Full Text] [Related]
19. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments. Tuikka AI; Leppänen MT; Akkanen J; Sormunen AJ; Leonards PE; van Hattum B; van Vliet LA; Brack W; Smedes F; Kukkonen JV Sci Total Environ; 2016 Sep; 563-564():396-404. PubMed ID: 27139309 [TBL] [Abstract][Full Text] [Related]
20. The partitioning of Triclosan between aqueous and particulate bound phases in the Hudson River Estuary. Wilson B; Chen RF; Cantwell M; Gontz A; Zhu J; Olsen CR Mar Pollut Bull; 2009; 59(4-7):207-12. PubMed ID: 19559448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]