These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25892616)

  • 1. Role of gastrocnemius activation in knee joint biomechanics: gastrocnemius acts as an ACL antagonist.
    Adouni M; Shirazi-Adl A; Marouane H
    Comput Methods Biomech Biomed Engin; 2016; 19(4):376-85. PubMed ID: 25892616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression.
    Marouane H; Shirazi-Adl A; Adouni M; Hashemi J
    J Biomech; 2014 Apr; 47(6):1353-9. PubMed ID: 24576586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in gastrocnemii activation at mid-to-late stance markedly affects the intact and anterior cruciate ligament deficient knee biomechanics and stability in gait.
    Sharifi M; Shirazi-Adl A
    Knee; 2021 Mar; 29():530-540. PubMed ID: 33756263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL.
    Li G; Rudy TW; Sakane M; Kanamori A; Ma CB; Woo SL
    J Biomech; 1999 Apr; 32(4):395-400. PubMed ID: 10213029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB; Pandy MG
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of cruciate-ligament loading on muscle forces and external load.
    Pandy MG; Shelburne KB
    J Biomech; 1997 Oct; 30(10):1015-24. PubMed ID: 9391868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computation of the role of kinetics, kinematics, posterior tibial slope and muscle cocontraction on the stability of ACL-deficient knee joint at heel strike - Towards identification of copers from non-copers.
    Sharifi M; Shirazi-Adl A; Marouane H
    J Biomech; 2018 Aug; 77():171-182. PubMed ID: 30033382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study.
    Biscarini A; Botti FM; Pettorossi VE
    Eur J Appl Physiol; 2013 Sep; 113(9):2263-73. PubMed ID: 23670482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle, ligament, and joint-contact forces at the knee during walking.
    Shelburne KB; Torry MR; Pandy MG
    Med Sci Sports Exerc; 2005 Nov; 37(11):1948-56. PubMed ID: 16286866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of the knee joint response, muscle forces and stability to variations in gait kinematics-kinetics.
    Sharifi M; Shirazi-Adl A; Marouane H
    J Biomech; 2020 Jan; 99():109472. PubMed ID: 31708244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading.
    Blackburn JT; Norcross MF; Cannon LN; Zinder SM
    J Athl Train; 2013; 48(6):764-72. PubMed ID: 24303987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of reaction forces on the anterior cruciate and anterolateral ligaments during internal rotation and anterior drawer forces at different flexion angles of the knee joint.
    Uğur L
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28251769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The gastrocnemius muscle is an antagonist of the anterior cruciate ligament.
    Fleming BC; Renstrom PA; Ohlen G; Johnson RJ; Peura GD; Beynnon BD; Badger GJ
    J Orthop Res; 2001 Nov; 19(6):1178-84. PubMed ID: 11781021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation.
    Li G; Zayontz S; Most E; DeFrate LE; Suggs JF; Rubash HE
    J Orthop Res; 2004 Mar; 22(2):293-7. PubMed ID: 15013087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions.
    Ali AA; Harris MD; Shalhoub S; Maletsky LP; Rullkoetter PJ; Shelburne KB
    J Biomech; 2017 May; 57():117-124. PubMed ID: 28457606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knee joint mechanics under quadriceps--hamstrings muscle forces are influenced by tibial restraint.
    Mesfar W; Shirazi-Adl A
    Clin Biomech (Bristol); 2006 Oct; 21(8):841-8. PubMed ID: 16774800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of the knee joint in flexion under various quadriceps forces.
    Mesfar W; Shirazi-Adl A
    Knee; 2005 Dec; 12(6):424-34. PubMed ID: 15939592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait.
    Marouane H; Shirazi-Adl A; Hashemi J
    J Biomech; 2015 Jul; 48(10):1899-905. PubMed ID: 25920895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moments and muscle activity after high tibial osteotomy and anterior cruciate ligament reconstruction.
    Kean CO; Birmingham TB; Garland JS; Jenkyn TR; Ivanova TD; Jones IC; Giffin RJ
    Med Sci Sports Exerc; 2009 Mar; 41(3):612-9. PubMed ID: 19204589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.