These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25892635)

  • 1. Pore volume accessibility of particulate and monolithic stationary phases.
    Urban J
    J Chromatogr A; 2015 May; 1396():54-61. PubMed ID: 25892635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity.
    Nischang I
    J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography.
    Grimes BA; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2007 Mar; 1144(1):14-29. PubMed ID: 17126846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pore size distribution of the first and the second generation of silica monolithic stationary phases.
    Bacskay I; Sepsey A; Felinger A
    J Chromatogr A; 2014 Sep; 1359():112-6. PubMed ID: 25085822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolithic stationary phases with a longitudinal gradient of porosity.
    Urban J; Hájek T; Svec F
    J Sep Sci; 2017 Apr; 40(8):1703-1709. PubMed ID: 28225173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical differences in chromatographic properties of silica- and polymer-based monoliths.
    Causon TJ; Nischang I
    J Chromatogr A; 2014 Sep; 1358():165-71. PubMed ID: 25074423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-through pore characteristics of monolithic silicas and their impact on column performance in high-performance liquid chromatography.
    Skudas R; Grimes BA; Thommes M; Unger KK
    J Chromatogr A; 2009 Mar; 1216(13):2625-36. PubMed ID: 19233368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive pore structure characterization of silica monoliths with controlled mesopore size and macropore size by nitrogen sorption, mercury porosimetry, transmission electron microscopy and inverse size exclusion chromatography.
    Lubda D; Lindner W; Quaglia M; du Fresne von Hohenesche C; Unger KK
    J Chromatogr A; 2005 Aug; 1083(1-2):14-22. PubMed ID: 16078683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of some physical and chromatographic properties of monolithic poly(styrene-co-divinylbenzene) columns.
    Oberacher H; Premstaller A; Huber CG
    J Chromatogr A; 2004 Mar; 1030(1-2):201-8. PubMed ID: 15043270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the effects of column porosity on gradient separations of proteins.
    Urban J; Jandera P; Kucerová Z; van Straten MA; Claessens HA
    J Chromatogr A; 2007 Oct; 1167(1):63-75. PubMed ID: 17804002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the pore size distribution of high-performance liquid chromatography stationary phases via inverse size exclusion chromatography.
    Bacskay I; Sepsey A; Felinger A
    J Chromatogr A; 2014 Apr; 1339():110-7. PubMed ID: 24666937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypercrosslinked cholesterol-based polystyrene monolithic capillary columns.
    Grzywiński D; Szumski M; Buszewski B
    J Chromatogr A; 2016 Dec; 1477():11-21. PubMed ID: 27887697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silica particles encapsulated poly(styrene-divinylbenzene) monolithic stationary phases for micro-high performance liquid chromatography.
    Bakry R; Stöggl WM; Hochleitner EO; Stecher G; Huck CW; Bonn GK
    J Chromatogr A; 2006 Nov; 1132(1-2):183-9. PubMed ID: 16920130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are we approaching a post-monolithic era?
    Urban J
    J Sep Sci; 2020 May; 43(9-10):1628-1633. PubMed ID: 31981291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of hydrothermal treatment on column performance for monolithic silica capillary columns.
    Hara T; Mascotto S; Weidmann C; Smarsly BM
    J Chromatogr A; 2011 Jun; 1218(23):3624-35. PubMed ID: 21546027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous polymer monoliths with large surface area and functional groups prepared via copolymerization of protected functional monomers and hypercrosslinking.
    Maya F; Svec F
    J Chromatogr A; 2013 Nov; 1317():32-8. PubMed ID: 23910448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hypercrosslinking conditions on pore size distribution and efficiency of monolithic stationary phases.
    Urban J; Škeříková V
    J Sep Sci; 2014 Nov; 37(21):3082-9. PubMed ID: 25113521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polystyrene bound stationary phase of excellent separation efficiency based on partially sub-2μm silica monolith particles.
    Ali F; Cheong WJ; A L Othman ZA; A L Majid AM
    J Chromatogr A; 2013 Aug; 1303():9-17. PubMed ID: 23849784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption equilibria of butyl- and amylbenzene on monolithic silica-based columns.
    Cavazzini A; Bardin G; Kaczmarski K; Szabelski P; Al-Bokari M; Guiochon G
    J Chromatogr A; 2002 May; 957(2):111-26. PubMed ID: 12113336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monolithic bed structure for capillary liquid chromatography.
    Aggarwal P; Tolley HD; Lee ML
    J Chromatogr A; 2012 Jan; 1219():1-14. PubMed ID: 22169193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.