These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 25892686)
1. Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout. Pinyou P; Conzuelo F; Sliozberg K; Vivekananthan J; Contin A; Pöller S; Plumeré N; Schuhmann W Bioelectrochemistry; 2015 Dec; 106(Pt A):22-7. PubMed ID: 25892686 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of high performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode. Korani A; Salimi A Biosens Bioelectron; 2013 Dec; 50():186-93. PubMed ID: 23850787 [TBL] [Abstract][Full Text] [Related]
4. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials. Scherbahn V; Putze MT; Dietzel B; Heinlein T; Schneider JJ; Lisdat F Biosens Bioelectron; 2014 Nov; 61():631-8. PubMed ID: 24967753 [TBL] [Abstract][Full Text] [Related]
5. Self-powered competitive immunosensor driven by biofuel cell based on hollow-channel paper analytical devices. Li S; Wang Y; Ge S; Yu J; Yan M Biosens Bioelectron; 2015 Sep; 71():18-24. PubMed ID: 25880834 [TBL] [Abstract][Full Text] [Related]
6. Rational Tuning of the Electrocatalytic Nanobiointerface for a "Turn-Off" Biofuel-Cell-Based Self-Powered Biosensor for p53 Protein. Han Y; Chabu JM; Hu S; Deng L; Liu YN; Guo S Chemistry; 2015 Sep; 21(37):13045-51. PubMed ID: 26211519 [TBL] [Abstract][Full Text] [Related]
7. Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots. Zhao M; Gao Y; Sun J; Gao F Anal Chem; 2015 Mar; 87(5):2615-22. PubMed ID: 25666266 [TBL] [Abstract][Full Text] [Related]
8. Rechargeable, flexible and mediator-free biosupercapacitor based on transparent ITO nanoparticle modified electrodes acting in µM glucose containing buffers. Bobrowski T; González Arribas E; Ludwig R; Toscano MD; Shleev S; Schuhmann W Biosens Bioelectron; 2018 Mar; 101():84-89. PubMed ID: 29049946 [TBL] [Abstract][Full Text] [Related]
9. Wiring of bilirubin oxidases with redox polymers on gas diffusion electrodes for increased stability of self-powered biofuel cells-based glucose sensing. Becker JM; Lielpetere A; Szczesny J; Bichon S; Gounel S; Mano N; Schuhmann W Bioelectrochemistry; 2023 Feb; 149():108314. PubMed ID: 36335789 [TBL] [Abstract][Full Text] [Related]
10. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase. Tsujimura S Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547 [TBL] [Abstract][Full Text] [Related]
11. A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell. Bollella P; Lee I; Blaauw D; Katz E Chemphyschem; 2020 Jan; 21(1):120-128. PubMed ID: 31408568 [TBL] [Abstract][Full Text] [Related]
12. Biofuel cell-based self-powered immunosensor for detection of 17β-estradiol by integrating the target-induced biofuel release and biogate immunoassay. Luo D; Yi J; Wu Y; Luo Y; Zhang Y; Men X; Wang H; Yang W; Pang P Mikrochim Acta; 2024 Jul; 191(8):477. PubMed ID: 39039391 [TBL] [Abstract][Full Text] [Related]
13. A self-powered glucose biosensor based on pyrolloquinoline quinone glucose dehydrogenase and bilirubin oxidase operating under physiological conditions. Kulkarni T; Slaughter G Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():5-8. PubMed ID: 29059797 [TBL] [Abstract][Full Text] [Related]
14. A promising dehydrogenase-based bioanode for a glucose biosensor and glucose/O2 biofuel cell. Saleh FS; Mao L; Ohsaka T Analyst; 2012 May; 137(9):2233-8. PubMed ID: 22416269 [TBL] [Abstract][Full Text] [Related]
15. Carbon Nanotube-Cellulose Pellicle for Glucose Biofuel Cell. Hasan MQ; Yuen J; Slaughter G Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440309 [TBL] [Abstract][Full Text] [Related]
16. Visual distance readout to display the level of energy generation in paper-based biofuel cells: application to enzymatic sensing of glucose. Wang Y; Zhang L; Zhao P; Ge S; Yan M; Yu J Mikrochim Acta; 2019 Apr; 186(5):283. PubMed ID: 30989340 [TBL] [Abstract][Full Text] [Related]
17. Biofuel cell backpacked insect and its application to wireless sensing. Shoji K; Akiyama Y; Suzuki M; Nakamura N; Ohno H; Morishima K Biosens Bioelectron; 2016 Apr; 78():390-395. PubMed ID: 26655178 [TBL] [Abstract][Full Text] [Related]
18. Enzyme-capped relay-functionalized mesoporous carbon nanoparticles: effective bioelectrocatalytic matrices for sensing and biofuel cell applications. Trifonov A; Herkendell K; Tel-Vered R; Yehezkeli O; Woerner M; Willner I ACS Nano; 2013 Dec; 7(12):11358-68. PubMed ID: 24266869 [TBL] [Abstract][Full Text] [Related]
19. Development of a Sensitive Self-Powered Glucose Biosensor Based on an Enzymatic Biofuel Cell. Chansaenpak K; Kamkaew A; Lisnund S; Prachai P; Ratwirunkit P; Jingpho T; Blay V; Pinyou P Biosensors (Basel); 2021 Jan; 11(1):. PubMed ID: 33430194 [TBL] [Abstract][Full Text] [Related]
20. 5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O Giroud F; Sawada K; Taya M; Cosnier S Biosens Bioelectron; 2017 Jan; 87():957-963. PubMed ID: 27665518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]