These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25893047)

  • 1. Applications of azo-based probes for imaging retinal hypoxia.
    Uddin MI; Evans SM; Craft JR; Marnett LJ; Uddin MJ; Jayagopal A
    ACS Med Chem Lett; 2015 Apr; 6(4):445-9. PubMed ID: 25893047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular probes for imaging of hypoxia in the retina.
    Evans SM; Kim K; Moore CE; Uddin MI; Capozzi ME; Craft JR; Sulikowski GA; Jayagopal A
    Bioconjug Chem; 2014 Nov; 25(11):2030-7. PubMed ID: 25250692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy.
    Uddin MI; Evans SM; Craft JR; Capozzi ME; McCollum GW; Yang R; Marnett LJ; Uddin MJ; Jayagopal A; Penn JS
    Sci Rep; 2016 Aug; 6():31011. PubMed ID: 27491345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo retinal and choroidal hypoxia imaging using a novel activatable hypoxia-selective near-infrared fluorescent probe.
    Fukuda S; Okuda K; Kishino G; Hoshi S; Kawano I; Fukuda M; Yamashita T; Beheregaray S; Nagano M; Ohneda O; Nagasawa H; Oshika T
    Graefes Arch Clin Exp Ophthalmol; 2016 Dec; 254(12):2373-2385. PubMed ID: 27572140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Imaging of Retinal Hypoxia Using HYPOX-4-Dependent Fluorescence in a Mouse Model of Laser-Induced Retinal Vein Occlusion (RVO).
    Uddin MI; Jayagopal A; McCollum GW; Yang R; Penn JS
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3818-3824. PubMed ID: 28750413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia-induced retinal neovascularization in zebrafish embryos: a potential model of retinopathy of prematurity.
    Wu YC; Chang CY; Kao A; Hsi B; Lee SH; Chen YH; Wang IJ
    PLoS One; 2015; 10(5):e0126750. PubMed ID: 25978439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for volumetric retinal tissue oxygen tension imaging.
    Felder AE; Wanek J; Teng PY; Blair NP; Shahidi M
    Curr Eye Res; 2018 Jan; 43(1):122-127. PubMed ID: 28956656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases.
    Le YZ
    Vision Res; 2017 Oct; 139():108-114. PubMed ID: 28601428
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Zhou Y; Yang S; Guo J; Dong H; Yin K; Huang WT; Yang R
    Anal Chem; 2020 Apr; 92(8):5787-5794. PubMed ID: 32192346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photobiomodulation for the treatment of retinal diseases: a review.
    Geneva II
    Int J Ophthalmol; 2016; 9(1):145-52. PubMed ID: 26949625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Aging and retinal vascular diseases].
    Takagi H
    Nippon Ganka Gakkai Zasshi; 2007 Mar; 111(3):207-30; discussion 231. PubMed ID: 17402563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery.
    Son S; Rao NV; Ko H; Shin S; Jeon J; Han HS; Nguyen VQ; Thambi T; Suh YD; Park JH
    Int J Biol Macromol; 2018 Apr; 110():399-405. PubMed ID: 29133095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia in the eye: a two-sided coin.
    Grimm C; Willmann G
    High Alt Med Biol; 2012 Sep; 13(3):169-75. PubMed ID: 22994516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G protein-coupled receptor 91 signaling in diabetic retinopathy and hypoxic retinal diseases.
    Hu J; Li T; Du X; Wu Q; Le YZ
    Vision Res; 2017 Oct; 139():59-64. PubMed ID: 28539261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors.
    Arjamaa O; Nikinmaa M
    Exp Eye Res; 2006 Sep; 83(3):473-83. PubMed ID: 16750526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. O-GlcNAcylation under hypoxic conditions and its effects on the blood-retinal barrier in diabetic retinopathy.
    Xu C; Liu G; Liu X; Wang F
    Int J Mol Med; 2014 Mar; 33(3):624-32. PubMed ID: 24366041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effects of dexamethasone on hypoxia-induced retinal edema in a mouse model.
    Inada M; Taguchi M; Harimoto K; Karasawa Y; Takeuchi M; Ito M
    Exp Eye Res; 2019 Jan; 178():82-90. PubMed ID: 30267655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular pathogenesis of retinal and choroidal vascular diseases.
    Campochiaro PA
    Prog Retin Eye Res; 2015 Nov; 49():67-81. PubMed ID: 26113211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ADP-ribose) polymerase inhibitors counteract diabetes- and hypoxia-induced retinal vascular endothelial growth factor overexpression.
    Obrosova IG; Minchenko AG; Frank RN; Seigel GM; Zsengeller Z; Pacher P; Stevens MJ; Szabó C
    Int J Mol Med; 2004 Jul; 14(1):55-64. PubMed ID: 15202016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease.
    Caprara C; Grimm C
    Prog Retin Eye Res; 2012 Jan; 31(1):89-119. PubMed ID: 22108059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.