BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25893097)

  • 1. Distal Regeneration Involves the Age Dependent Activity of Branchial Sac Stem Cells in the Ascidian
    Jeffery WR
    Regeneration (Oxf); 2015 Feb; 2(1):1-18. PubMed ID: 25893097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentially expressed chaperone genes reveal a stress response required for unidirectional regeneration in the basal chordate Ciona.
    Jeffery WR; Li B; Ng M; Li L; Gorički Š; Ma L
    BMC Biol; 2023 Jun; 21(1):148. PubMed ID: 37365564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration, Stem Cells, and Aging in the Tunicate Ciona: Insights from the Oral Siphon.
    Jeffery WR
    Int Rev Cell Mol Biol; 2015; 319():255-82. PubMed ID: 26404471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apoptosis is a generator of Wnt-dependent regeneration and homeostatic cell renewal in the ascidian Ciona.
    Jeffery WR; Gorički Š
    Biol Open; 2021 Apr; 10(4):. PubMed ID: 33913473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progenitor targeting by adult stem cells in Ciona homeostasis, injury, and regeneration.
    Jeffery WR
    Dev Biol; 2019 Apr; 448(2):279-290. PubMed ID: 30205080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the chordate regeneration blastema: Differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona.
    Hamada M; Goricki S; Byerly MS; Satoh N; Jeffery WR
    Dev Biol; 2015 Sep; 405(2):304-15. PubMed ID: 26206613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Siphon regeneration capacity is compromised during aging in the ascidian Ciona intestinalis.
    Jeffery WR
    Mech Ageing Dev; 2012; 133(9-10):629-36. PubMed ID: 22935550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closing the wounds: one hundred and twenty five years of regenerative biology in the ascidian Ciona intestinalis.
    Jeffery WR
    Genesis; 2015 Jan; 53(1):48-65. PubMed ID: 24974948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Tunicate
    Jeffery WR
    Invertebr Reprod Dev; 2015 Jan; 59(Suppl 1):17-22. PubMed ID: 25544801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of oral siphon pigment organs in the ascidian Ciona intestinalis.
    Auger H; Sasakura Y; Joly JS; Jeffery WR
    Dev Biol; 2010 Mar; 339(2):374-89. PubMed ID: 20059994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of the branchial wall of a lower chordate: The ascidian Ciona intestinalis.
    Pestarino M; Fiala-Medioni A; Ravera F
    J Morphol; 1988 Sep; 197(3):269-276. PubMed ID: 29895110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trunk lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: insights into the ancestry and evolution of the neural crest.
    Jeffery WR; Chiba T; Krajka FR; Deyts C; Satoh N; Joly JS
    Dev Biol; 2008 Dec; 324(1):152-60. PubMed ID: 18801357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular and molecular mechanisms of regeneration in colonial and solitary Ascidians.
    Kassmer SH; Nourizadeh S; De Tomaso AW
    Dev Biol; 2019 Apr; 448(2):271-278. PubMed ID: 30521811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dopamine-synthesizing cells in the swimming larva of the tunicate Ciona intestinalis are located only in the hypothalamus-related domain of the sensory vesicle.
    Moret F; Christiaen L; Deyts C; Blin M; Joly JS; Vernier P
    Eur J Neurosci; 2005 Jun; 21(11):3043-55. PubMed ID: 15978015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.
    Yoshida K; Hozumi A; Treen N; Sakuma T; Yamamoto T; Shirae-Kurabayashi M; Sasakura Y
    Dev Biol; 2017 Mar; 423(2):111-125. PubMed ID: 28161521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytodifferentiation of hair cells during the development of a basal chordate.
    Gasparini F; Caicci F; Rigon F; Zaniolo G; Burighel P; Manni L
    Hear Res; 2013 Oct; 304():188-99. PubMed ID: 23876523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential gene regulation by V(IV) and V (V) ions in the branchial sac, intestine, and blood cells of a vanadium-rich ascidian, Ciona intestinalis.
    Kume S; Ueki T; Matsuoka H; Hamada M; Satoh N; Michibata H
    Biometals; 2012 Oct; 25(5):1037-50. PubMed ID: 22811043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression profiles in Ciona intestinalis stigmatal cells: insight into formation of the ascidian branchial fissures.
    Shimazaki A; Sakai A; Ogasawara M
    Dev Dyn; 2006 Feb; 235(2):562-9. PubMed ID: 16342199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration and post-metamorphic development of the central nervous system in the protochordate Ciona intestinalis: a study with monoclonal antibodies.
    Bollner T; Howalt S; Thorndyke MC; Beesley PW
    Cell Tissue Res; 1995 Feb; 279(2):421-32. PubMed ID: 7895279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ciona intestinalis and Oxycomanthus japonicus, representatives of marine invertebrates.
    Sasakura Y; Inaba K; Satoh N; Kondo M; Akasaka K
    Exp Anim; 2009 Oct; 58(5):459-69. PubMed ID: 19897929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.