These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25893194)

  • 1. A fast neural network approach to predict lung tumor motion during respiration for radiation therapy applications.
    Bukovsky I; Homma N; Ichiji K; Cejnek M; Slama M; Benes PM; Bila J
    Biomed Res Int; 2015; 2015():489679. PubMed ID: 25893194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using an external surrogate for predictor model training in real-time motion management of lung tumors.
    Rottmann J; Berbeco R
    Med Phys; 2014 Dec; 41(12):121706. PubMed ID: 25471953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time prediction of tumor motion using a dynamic neural network.
    Mafi M; Moghadam SM
    Med Biol Eng Comput; 2020 Mar; 58(3):529-539. PubMed ID: 31916074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories.
    Teo TP; Ahmed SB; Kawalec P; Alayoubi N; Bruce N; Lyn E; Pistorius S
    Med Phys; 2018 Feb; 45(2):830-845. PubMed ID: 29244902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy.
    Shirzadi Z; Sadeghi-Naini A; Samani A
    Med Phys; 2013 May; 40(5):051902. PubMed ID: 23635272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery.
    Vedam S; Docef A; Fix M; Murphy M; Keall P
    Med Phys; 2005 Jun; 32(6):1607-20. PubMed ID: 16013720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications.
    Isaksson M; Jalden J; Murphy MJ
    Med Phys; 2005 Dec; 32(12):3801-9. PubMed ID: 16475780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical aspects of real time positron emission tracking for gated radiotherapy.
    Chamberland M; McEwen MR; Xu T
    Med Phys; 2016 Feb; 43(2):783-95. PubMed ID: 26843241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the motion of chest internal points using a recurrent neural network trained with real-time recurrent learning for latency compensation in lung cancer radiotherapy.
    Pohl M; Uesaka M; Demachi K; Bhusal Chhatkuli R
    Comput Med Imaging Graph; 2021 Jul; 91():101941. PubMed ID: 34265553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the position of external markers using a recurrent neural network trained with unbiased online recurrent optimization for safe lung cancer radiotherapy.
    Pohl M; Uesaka M; Takahashi H; Demachi K; Bhusal Chhatkuli R
    Comput Methods Programs Biomed; 2022 Jul; 222():106908. PubMed ID: 35716534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting respiratory motion for four-dimensional radiotherapy.
    Vedam SS; Keall PJ; Docef A; Todor DA; Kini VR; Mohan R
    Med Phys; 2004 Aug; 31(8):2274-83. PubMed ID: 15377094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time prediction of respiratory motion based on local regression methods.
    Ruan D; Fessler JA; Balter JM
    Phys Med Biol; 2007 Dec; 52(23):7137-52. PubMed ID: 18029998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose.
    Yan H; Li H; Liu Z; Nath R; Liu W
    Phys Med Biol; 2012 Dec; 57(24):8455-69. PubMed ID: 23202376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An artificial neural network (ANN)-based lung-tumor motion predictor for intrafractional MR tumor tracking.
    Yun J; Mackenzie M; Rathee S; Robinson D; Fallone BG
    Med Phys; 2012 Jul; 39(7):4423-33. PubMed ID: 22830775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic volume vs respiratory correlated 4DCT for motion assessment in radiation therapy simulation.
    Coolens C; Bracken J; Driscoll B; Hope A; Jaffray D
    Med Phys; 2012 May; 39(5):2669-81. PubMed ID: 22559637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive prediction of respiratory motion for motion compensation radiotherapy.
    Ren Q; Nishioka S; Shirato H; Berbeco RI
    Phys Med Biol; 2007 Nov; 52(22):6651-61. PubMed ID: 17975289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking.
    Sawant A; Smith RL; Venkat RB; Santanam L; Cho B; Poulsen P; Cattell H; Newell LJ; Parikh P; Keall PJ
    Int J Radiat Oncol Biol Phys; 2009 Jun; 74(2):575-82. PubMed ID: 19327907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smoothing of respiratory motion traces for motion-compensated radiotherapy.
    Ernst F; Schlaefer A; Schweikard A
    Med Phys; 2010 Jan; 37(1):282-94. PubMed ID: 20175491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiple model approach to respiratory motion prediction for real-time IGRT.
    Putra D; Haas OC; Mills JA; Burnham KJ
    Phys Med Biol; 2008 Mar; 53(6):1651-63. PubMed ID: 18367794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The comparative performance of four respiratory motion predictors for real-time tumour tracking.
    Krauss A; Nill S; Oelfke U
    Phys Med Biol; 2011 Aug; 56(16):5303-17. PubMed ID: 21799237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.