These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 25893418)

  • 21. Detection and identification of Bogia coconut syndrome phytoplasma from seed-associated tissues and seedlings of coconut (Cocos nucifera) and betel nut (Areca catechu).
    Lu H; Wilson B; Zhang H; Woruba SB; Feng B; Johnson AC; Komolong B; Kuniata L; Yang G; Gurr GM
    Sci Rep; 2024 May; 14(1):11542. PubMed ID: 38773154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and functional expression of a cDNA encoding stearoyl-ACP Δ9-desaturase from the endosperm of coconut (Cocos nucifera L.).
    Gao L; Sun R; Liang Y; Zhang M; Zheng Y; Li D
    Gene; 2014 Oct; 549(1):70-6. PubMed ID: 25038276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo transcriptome assembly and identification of the gene conferring a "pandan-like" aroma in coconut (Cocos nucifera L.).
    Saensuk C; Wanchana S; Choowongkomon K; Wongpornchai S; Kraithong T; Imsabai W; Chaichoompu E; Ruanjaichon V; Toojinda T; Vanavichit A; Arikit S
    Plant Sci; 2016 Nov; 252():324-334. PubMed ID: 27717469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei.
    Fan G; Dong Y; Deng M; Zhao Z; Niu S; Xu E
    Int J Mol Sci; 2014 Dec; 15(12):23141-62. PubMed ID: 25514414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcript repression of floral organ identity genes.
    Su YT; Chen JC; Lin CP
    Mol Plant Microbe Interact; 2011 Dec; 24(12):1502-12. PubMed ID: 21864044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma.
    Maust BE; Espadas F; Talavera C; Aguilar M; Santamaría JM; Oropeza C
    Phytopathology; 2003 Aug; 93(8):976-81. PubMed ID: 18943864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alternative splicing of flowering time gene FT is associated with halving of time to flowering in coconut.
    Xia W; Liu R; Zhang J; Mason AS; Li Z; Gong S; Zhong Y; Dou Y; Sun X; Fan H; Xiao Y
    Sci Rep; 2020 Jul; 10(1):11640. PubMed ID: 32669611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene expression profiling of phytoplasma-infected Madagascar periwinkle leaves using differential display.
    De Luca V; Capasso C; Capasso A; Pastore M; Carginale V
    Mol Biol Rep; 2011 Jun; 38(5):2993-3000. PubMed ID: 20127177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection.
    Liu LY; Tseng HI; Lin CP; Lin YY; Huang YH; Huang CK; Chang TH; Lin SS
    Plant Cell Physiol; 2014 May; 55(5):942-57. PubMed ID: 24492256
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Lantican DV; Strickler SR; Canama AO; Gardoce RR; Mueller LA; Galvez HF
    G3 (Bethesda); 2019 Aug; 9(8):2377-2393. PubMed ID: 31167834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two Phytoplasmas Elicit Different Responses in the Insect Vector Euscelidius variegatus Kirschbaum.
    Galetto L; Abbà S; Rossi M; Vallino M; Pesando M; Arricau-Bouvery N; Dubrana MP; Chitarra W; Pegoraro M; Bosco D; Marzachì C
    Infect Immun; 2018 May; 86(5):. PubMed ID: 29531134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA-Seq profile of flavescence dorée phytoplasma in grapevine.
    Abbà S; Galetto L; Carle P; Carrère S; Delledonne M; Foissac X; Palmano S; Veratti F; Marzachì C
    BMC Genomics; 2014 Dec; 15(1):1088. PubMed ID: 25495145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease.
    Gai YP; Li YQ; Guo FY; Yuan CZ; Mo YY; Zhang HL; Wang H; Ji XL
    Sci Rep; 2014 Jun; 4():5378. PubMed ID: 24946736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) germplasm using microsatellite DNA, with special emphasis on the Fiji Dwarf cultivar.
    Meerow AW; Wisser RJ; Brown JS; Kuhn DN; Schnell RJ; Broschat TK
    Theor Appl Genet; 2003 Feb; 106(4):715-26. PubMed ID: 12596002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome.
    Aljohi HA; Liu W; Lin Q; Zhao Y; Zeng J; Alamer A; Alanazi IO; Alawad AO; Al-Sadi AM; Hu S; Yu J
    PLoS One; 2016; 11(10):e0163990. PubMed ID: 27736909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization.
    Liang Y; Yuan Y; Liu T; Mao W; Zheng Y; Li D
    BMC Plant Biol; 2014 Aug; 14():205. PubMed ID: 25084812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 'Candidatus Phytoplasma solani' interferes with the distribution and uptake of iron in tomato.
    Buoso S; Pagliari L; Musetti R; Martini M; Marroni F; Schmidt W; Santi S
    BMC Genomics; 2019 Sep; 20(1):703. PubMed ID: 31500568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. iTRAQ-based comparative proteomic analysis of two coconut varieties reveals aromatic coconut cold-sensitive in response to low temperature.
    Yang Y; Saand MA; Abdelaal WB; Zhang J; Wu Y; Li J; Fan H; Wang F
    J Proteomics; 2020 May; 220():103766. PubMed ID: 32240811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembly and Annotation of the Nuclear and Organellar Genomes of a Dwarf Coconut (Chowghat Green Dwarf) Possessing Enhanced Disease Resistance.
    Muliyar RK; Chowdappa P; Behera SK; Kasaragod S; Gangaraj KP; Kotimoole CN; Nekrakalaya B; Mohanty V; Sampgod RB; Banerjee G; Das AJ; Niral V; Karun A; Mahato AK; Gaikwad K; Singh NK; Prasad TSK
    OMICS; 2020 Dec; 24(12):726-742. PubMed ID: 33170083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolomic analysis reveals the potential metabolites and pathogenesis involved in mulberry yellow dwarf disease.
    Gai YP; Han XJ; Li YQ; Yuan CZ; Mo YY; Guo FY; Liu QX; Ji XL
    Plant Cell Environ; 2014 Jun; 37(6):1474-90. PubMed ID: 24329897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.