BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25893481)

  • 1. What sustains the unnatural base pairs (UBPs) with no hydrogen bonds.
    Jahiruddin S; Datta A
    J Phys Chem B; 2015 May; 119(18):5839-45. PubMed ID: 25893481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Electronic Properties of Unnatural Base Pairs: The Role of Dispersion Interactions.
    Jahiruddin S; Mandal N; Datta A
    Chemphyschem; 2018 Jan; 19(1):67-74. PubMed ID: 29139595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do hydrophobic nucleobases differ from natural DNA nucleobases? Comparison of structural features and duplex properties from QM calculations and MD simulations.
    Negi I; Kathuria P; Sharma P; Wetmore SD
    Phys Chem Chem Phys; 2017 Jun; 19(25):16365-16374. PubMed ID: 28657627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Structure-Activity Relationships and Optimization of an Unnatural Base Pair for Replication in a Semi-Synthetic Organism.
    Feldman AW; Romesberg FE
    J Am Chem Soc; 2017 Aug; 139(33):11427-11433. PubMed ID: 28796508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic unnatural base pairs show a Watson-Crick pairing in micro-second molecular dynamics simulations.
    Galindo-Murillo R; Barroso-Flores J
    J Biomol Struct Dyn; 2020 Sep; 38(14):4098-4106. PubMed ID: 31542995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic exploration of a class of hydrophobic unnatural base pairs yields multiple new candidates for the expansion of the genetic alphabet.
    Dhami K; Malyshev DA; Ordoukhanian P; Kubelka T; Hocek M; Romesberg FE
    Nucleic Acids Res; 2014; 42(16):10235-44. PubMed ID: 25122747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and dynamical instability of DNA caused by high occurrence of d5SICS and dNaM unnatural nucleotides.
    Galindo-Murillo R; Barroso-Flores J
    Phys Chem Chem Phys; 2017 Apr; 19(16):10571-10580. PubMed ID: 28394373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid nucleobases as new and efficient unnatural genetic letters.
    Jena NR; Das P
    J Biomol Struct Dyn; 2023 Jan; 41(1):366-376. PubMed ID: 34796792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended weak bonding interactions in DNA: pi-stacking (base-base), base-backbone, and backbone-backbone interactions.
    Matta CF; Castillo N; Boyd RJ
    J Phys Chem B; 2006 Jan; 110(1):563-78. PubMed ID: 16471569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies.
    Sponer J; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 1996 Aug; 14(1):117-35. PubMed ID: 8877568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognate base-pair selectivity of hydrophobic unnatural bases in DNA ligation by T4 DNA ligase.
    Kimoto M; Soh SHG; Tan HP; Okamoto I; Hirao I
    Biopolymers; 2021 Jan; 112(1):e23407. PubMed ID: 33156531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical studies on the intermolecular interactions of potentially primordial base-pair analogues.
    Sponer JE; Vázquez-Mayagoitia A; Sumpter BG; Leszczynski J; Sponer J; Otyepka M; Banás P; Fuentes-Cabrera M
    Chemistry; 2010 Mar; 16(10):3057-65. PubMed ID: 20119984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the stability of D5SIC-DNAM-incorporated DNA duplex in
    Debnath T; Cisneros GA
    Phys Chem Chem Phys; 2024 Feb; 26(9):7287-7295. PubMed ID: 38353000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet.
    Dien VT; Holcomb M; Feldman AW; Fischer EC; Dwyer TJ; Romesberg FE
    J Am Chem Soc; 2018 Nov; 140(47):16115-16123. PubMed ID: 30418780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-aromatic contacts in intra-strand base pairs: analysis of high-resolution DNA crystal structures and quantum chemical calculations.
    Jain A; Krishna Deepak RNV; Sankararamakrishnan R
    J Struct Biol; 2014 Jul; 187(1):49-57. PubMed ID: 24816369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics and dynamics of the non-natural fluorescent 4AP:DAP base pair.
    Chawla M; Autiero I; Oliva R; Cavallo L
    Phys Chem Chem Phys; 2018 Jan; 20(5):3699-3709. PubMed ID: 29345270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. B-DNA structure and stability: the role of hydrogen bonding, π-π stacking interactions, twist-angle, and solvation.
    Poater J; Swart M; Bickelhaupt FM; Fonseca Guerra C
    Org Biomol Chem; 2014 Jul; 12(26):4691-700. PubMed ID: 24871817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can modified DNA base pairs with chalcogen bonding expand the genetic alphabet? A combined quantum chemical and molecular dynamics simulation study.
    Sharma KD; Kathuria P; Wetmore SD; Sharma P
    Phys Chem Chem Phys; 2020 Nov; 22(41):23754-23765. PubMed ID: 33063082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards an Understanding of the Molecular Mechanisms of Variable Unnatural Base-Pair Behavior: A Biophysical Analysis of dNaM-dTPT3.
    Karadeema RJ; Morris SE; Lairson LL; Krishnamurthy R
    Chemistry; 2021 Oct; 27(56):13991-13997. PubMed ID: 34382264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.