These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25893481)

  • 41. Energy hyperspace for stacking interaction in AU/AU dinucleotide step: Dispersion-corrected density functional theory study.
    Mukherjee S; Kailasam S; Bansal M; Bhattacharyya D
    Biopolymers; 2014 Jan; 101(1):107-20. PubMed ID: 23722519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Major groove substituents and polymerase recognition of a class of predominantly hydrophobic unnatural base pairs.
    Lavergne T; Malyshev DA; Romesberg FE
    Chemistry; 2012 Jan; 18(4):1231-9. PubMed ID: 22190386
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study.
    Sponer J; Gabb HA; Leszczynski J; Hobza P
    Biophys J; 1997 Jul; 73(1):76-87. PubMed ID: 9199773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gas-phase DNA oligonucleotide structures. A QM/MM and atoms in molecules study.
    Robertazzi A; Platts JA
    J Phys Chem A; 2006 Mar; 110(11):3992-4000. PubMed ID: 16539422
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intercalation of daunomycin into stacked DNA base pairs. DFT study of an anticancer drug.
    Barone G; Guerra CF; Gambino N; Silvestri A; Lauria A; Almerico AM; Bickelhaupt FM
    J Biomol Struct Dyn; 2008 Aug; 26(1):115-30. PubMed ID: 18533732
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recognition of an Unnatural Base Pair by Tool Enzymes from Bacteriophages and Its Application in the Enzymatic Preparation of DNA with an Expanded Genetic Alphabet.
    Bai J; Zou J; Cao Y; Du Y; Chen T
    ACS Synth Biol; 2023 Sep; 12(9):2676-2690. PubMed ID: 37590442
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of the ABEEMσπ Polarization Force Field for Base Pairs with Amino Acid Residue Complexes.
    Liu C; Li Y; Han BY; Gong LD; Lu LN; Yang ZZ; Zhao DX
    J Chem Theory Comput; 2017 May; 13(5):2098-2111. PubMed ID: 28402659
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non covalent interactions in RNA and DNA base pairs: a quantum-mechanical study of the coupling between solvent and electronic density.
    Lipparini F; Scalmani G; Mennucci B
    Phys Chem Chem Phys; 2009 Dec; 11(48):11617-23. PubMed ID: 20024434
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PCR with an expanded genetic alphabet.
    Malyshev DA; Seo YJ; Ordoukhanian P; Romesberg FE
    J Am Chem Soc; 2009 Oct; 131(41):14620-1. PubMed ID: 19788296
    [TBL] [Abstract][Full Text] [Related]  

  • 51. G.C base pair in parallel-stranded DNA--a novel type of base pairing: an ab initio quantum chemical study.
    Sponer J; Hobza P
    J Biomol Struct Dyn; 1994 Dec; 12(3):671-80. PubMed ID: 7727065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Remarkable metal counterion effect on the internucleotide J-couplings and chemical shifts of the N-H...N hydrogen bonds in the W-C base pairs.
    Li H; Cukier RI; Bu Y
    J Phys Chem B; 2008 Jul; 112(30):9174-81. PubMed ID: 18598072
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies.
    Hirao I; Kimoto M; Yamashige R
    Acc Chem Res; 2012 Dec; 45(12):2055-65. PubMed ID: 22263525
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selectivity in DNA replication. Interplay of steric shape, hydrogen bonds, π-stacking and solvent effects.
    Poater J; Swart M; Fonseca Guerra C; Bickelhaupt FM
    Chem Commun (Camb); 2011 Jul; 47(26):7326-8. PubMed ID: 21611661
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydration and stability of nucleic acid bases and base pairs.
    Kabelác M; Hobza P
    Phys Chem Chem Phys; 2007 Feb; 9(8):903-17. PubMed ID: 17301881
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of an unnatural base pair toward natural-like replication.
    Seo YJ; Hwang GT; Ordoukhanian P; Romesberg FE
    J Am Chem Soc; 2009 Mar; 131(9):3246-52. PubMed ID: 19256568
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peripheral substitution effects on unnatural base pairs: A case of brominated TPT3 to enhance replication fidelity.
    Huo B; Wang C; Hu X; Wang H; Zhu G; Zhu A; Li L
    Bioorg Chem; 2023 Nov; 140():106827. PubMed ID: 37683537
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The solvation, partitioning, hydrogen bonding, and dimerization of nucleotide bases: a multifaceted challenge for quantum chemistry.
    Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG
    Phys Chem Chem Phys; 2011 Jun; 13(23):10908-22. PubMed ID: 21566800
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.
    Yurenko YP; Zhurakivsky RO; Samijlenko SP; Hovorun DM
    J Biomol Struct Dyn; 2011 Aug; 29(1):51-65. PubMed ID: 21696225
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and properties of oligonucleotides with iodo-substituted aromatic aglycons: investigation of possible halogen bonding base pairs.
    Tawarada R; Seio K; Sekine M
    J Org Chem; 2008 Jan; 73(2):383-90. PubMed ID: 18081343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.