These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25893566)

  • 1. Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae.
    Saint-Marc C; Hürlimann HC; Daignan-Fornier B; Pinson B
    Curr Genet; 2015 Nov; 61(4):633-40. PubMed ID: 25893566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting purine-histidine cross-pathway regulation in Saccharomyces cerevisiae: a central role for a small molecule.
    Rébora K; Laloo B; Daignan-Fornier B
    Genetics; 2005 May; 170(1):61-70. PubMed ID: 15744050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-bound Bas1 recruits Pho2 to activate ADE genes in Saccharomyces cerevisiae.
    Som I; Mitsch RN; Urbanowski JL; Rolfes RJ
    Eukaryot Cell; 2005 Oct; 4(10):1725-35. PubMed ID: 16215179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of mitochondrial and cytoplasmic serine hydroxymethyltransferase isozymes in de novo purine synthesis in Saccharomyces cerevisiae.
    Kastanos EK; Woldman YY; Appling DR
    Biochemistry; 1997 Dec; 36(48):14956-64. PubMed ID: 9398220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of methenyltetrahydrofolate synthetase from Saccharomyces cerevisiae.
    Holmes WB; Appling DR
    J Biol Chem; 2002 Jun; 277(23):20205-13. PubMed ID: 11923304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses.
    Herbig K; Chiang EP; Lee LR; Hills J; Shane B; Stover PJ
    J Biol Chem; 2002 Oct; 277(41):38381-9. PubMed ID: 12161434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methionine synthesis, aminoimidazole carboxamide excretion and folate levels in pregnant rats.
    N'Diaye F; Hitier Y; Poiter de Courcy G; Goubern M; Bourdel G
    J Nutr; 1980 Mar; 110(3):522-31. PubMed ID: 6965714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the balance of one-carbon metabolism in Saccharomyces cerevisiae.
    Piper MD; Hong SP; Ball GE; Dawes IW
    J Biol Chem; 2000 Oct; 275(40):30987-95. PubMed ID: 10871621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of glutamine, glycine and 10-formyl tetrahydrofolate is coregulated with purine biosynthesis in Saccharomyces cerevisiae.
    Denis V; Daignan-Fornier B
    Mol Gen Genet; 1998 Aug; 259(3):246-55. PubMed ID: 9749667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of C metabolism by L-methionine in Saccharomyces cerevisiae.
    Lor KL; Cossins EA
    Biochem J; 1972 Dec; 130(3):773-83. PubMed ID: 4198357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of hepatic enzymes involved in serine- and folate-dependent one-carbon metabolism in rabbits.
    Thompson HR; Jones GM; Narkewicz MR
    Am J Physiol Gastrointest Liver Physiol; 2001 May; 280(5):G873-8. PubMed ID: 11292595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interrelationships among folate, vitamin B12, and methionine metabolism.
    Shane B; Stokstad EL
    Adv Nutr Res; 1983; 5():133-70. PubMed ID: 6405588
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulation of folate-dependent enzyme levels in Aspergillus nidulans: studies with regulatory mutants.
    Lewandowska I; Balińska M; Natorff R; Paszewski A
    Biochim Biophys Acta; 1996 May; 1290(1):89-94. PubMed ID: 8645712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway.
    Ducker GS; Chen L; Morscher RJ; Ghergurovich JM; Esposito M; Teng X; Kang Y; Rabinowitz JD
    Cell Metab; 2016 Jun; 23(6):1140-1153. PubMed ID: 27211901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways.
    Pinson B; Vaur S; Sagot I; Coulpier F; Lemoine S; Daignan-Fornier B
    Genes Dev; 2009 Jun; 23(12):1399-407. PubMed ID: 19528318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of purine biosynthetic intermediates in response to folate stress in Escherichia coli.
    Rohlman CE; Matthews RG
    J Bacteriol; 1990 Dec; 172(12):7200-10. PubMed ID: 2254281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and toxic effects of purine intermediate 5-amino-4-imidazolecarboxamide ribonucleotide (AICAR) in yeast.
    Hürlimann HC; Laloo B; Simon-Kayser B; Saint-Marc C; Coulpier F; Lemoine S; Daignan-Fornier B; Pinson B
    J Biol Chem; 2011 Sep; 286(35):30994-31002. PubMed ID: 21757731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methionine synthase supports tumour tetrahydrofolate pools.
    Ghergurovich JM; Xu X; Wang JZ; Yang L; Ryseck RP; Wang L; Rabinowitz JD
    Nat Metab; 2021 Nov; 3(11):1512-1520. PubMed ID: 34799699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The one-carbon metabolism pathway highlights therapeutic targets for gastrointestinal cancer (Review).
    Konno M; Asai A; Kawamoto K; Nishida N; Satoh T; Doki Y; Mori M; Ishii H
    Int J Oncol; 2017 Apr; 50(4):1057-1063. PubMed ID: 28259896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.