These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25893788)

  • 1. Restoring (E)-β-Caryophyllene Production in a Non-producing Maize Line Compromises its Resistance against the Fungus Colletotrichum graminicola.
    Fantaye CA; Köpke D; Gershenzon J; Degenhardt J
    J Chem Ecol; 2015 Mar; 41(3):213-23. PubMed ID: 25893788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties.
    Köllner TG; Held M; Lenk C; Hiltpold I; Turlings TC; Gershenzon J; Degenhardt J
    Plant Cell; 2008 Feb; 20(2):482-94. PubMed ID: 18296628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruitment of entomopathogenic nematodes by insect-damaged maize roots.
    Rasmann S; Köllner TG; Degenhardt J; Hiltpold I; Toepfer S; Kuhlmann U; Gershenzon J; Turlings TC
    Nature; 2005 Apr; 434(7034):732-7. PubMed ID: 15815622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize.
    Wicklow DT; Jordan AM; Gloer JB
    Mycol Res; 2009 Dec; 113(Pt 12):1433-42. PubMed ID: 19825415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns.
    Yang T; Stoopen G; Yalpani N; Vervoort J; de Vos R; Voster A; Verstappen FW; Bouwmeester HJ; Jongsma MA
    Metab Eng; 2011 Jul; 13(4):414-25. PubMed ID: 21296182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diferuloylsucroses and Fusarium graminearum resistance in maize seedling roots.
    Zhou S; Zhang YK; Kremling KA; Ding Y; Bennett JS; Bae JS; Kim DK; Ackerman HH; Kolomiets MV; Schmelz EA; Schroeder FC; Buckler ES; Jander G
    New Phytol; 2019 Mar; 221(4):2096-2111. PubMed ID: 30289553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An adequate Fe nutritional status of maize suppresses infection and biotrophic growth of Colletotrichum graminicola.
    Ye F; Albarouki E; Lingam B; Deising HB; von Wirén N
    Physiol Plant; 2014 Jul; 151(3):280-92. PubMed ID: 24512386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Maize Inbred Exhibits Resistance Against Western Corn Rootwoorm, Diabrotica virgifera virgifera.
    Castano-Duque L; Loades KW; Tooker JF; Brown KM; Paul Williams W; Luthe DS
    J Chem Ecol; 2017 Dec; 43(11-12):1109-1123. PubMed ID: 29151152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize.
    Djonovic S; Vargas WA; Kolomiets MV; Horndeski M; Wiest A; Kenerley CM
    Plant Physiol; 2007 Nov; 145(3):875-89. PubMed ID: 17885089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correspondence between symptom development of Colletotrichum graminicola and fungal biomass, quantified by a newly developed qPCR assay, depends on the maize variety.
    Weihmann F; Eisermann I; Becher R; Krijger JJ; Hübner K; Deising HB; Wirsel SG
    BMC Microbiol; 2016 May; 16():94. PubMed ID: 27215339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field.
    Robert CA; Erb M; Hiltpold I; Hibbard BE; Gaillard MD; Bilat J; Degenhardt J; Cambet-Petit-Jean X; Turlings TC; Zwahlen C
    Plant Biotechnol J; 2013 Jun; 11(5):628-39. PubMed ID: 23425633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and indirect plant defenses are not suppressed by endosymbionts of a specialist root herbivore.
    Robert CA; Frank DL; Leach KA; Turlings TC; Hibbard BE; Erb M
    J Chem Ecol; 2013 Apr; 39(4):507-15. PubMed ID: 23440444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize.
    Vargas WA; Martín JM; Rech GE; Rivera LP; Benito EP; Díaz-Mínguez JM; Thon MR; Sukno SA
    Plant Physiol; 2012 Mar; 158(3):1342-58. PubMed ID: 22247271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Penetration and colonization of unwounded maize tissues by the maize anthracnose pathogen Colletotrichum graminicola and the related nonpathogen C. sublineolum.
    Venard C; Vaillancourt L
    Mycologia; 2007; 99(3):368-77. PubMed ID: 17883028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green leaf volatiles and jasmonic acid enhance susceptibility to anthracnose diseases caused by Colletotrichum graminicola in maize.
    Gorman Z; Christensen SA; Yan Y; He Y; Borrego E; Kolomiets MV
    Mol Plant Pathol; 2020 May; 21(5):702-715. PubMed ID: 32105380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced resistance in maize is based on organ-specific defence responses.
    Balmer D; de Papajewski DV; Planchamp C; Glauser G; Mauch-Mani B
    Plant J; 2013 Apr; 74(2):213-25. PubMed ID: 23302050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root infection and systemic colonization of maize by Colletotrichum graminicola.
    Sukno SA; García VM; Shaw BD; Thon MR
    Appl Environ Microbiol; 2008 Feb; 74(3):823-32. PubMed ID: 18065625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation of PAMP-triggered immunity in maize requires down-regulation of the key β-1,6-glucan synthesis genes KRE5 and KRE6 in biotrophic hyphae of Colletotrichum graminicola.
    Oliveira-Garcia E; Deising HB
    Plant J; 2016 Aug; 87(4):355-75. PubMed ID: 27144995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest.
    Degenhardt J; Hiltpold I; Köllner TG; Frey M; Gierl A; Gershenzon J; Hibbard BE; Ellersieck MR; Turlings TC
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13213-8. PubMed ID: 19666594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attraction of Heterorhabditis sp. toward synthetic (E)-beta-cariophyllene, a plant SOS signal emitted by maize on feeding by larvae of Diabrotica virgifera virgifera.
    Anbesse S; Ehlers RU
    Commun Agric Appl Biol Sci; 2010; 75(3):455-8. PubMed ID: 21539265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.