These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25893788)

  • 21. A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize.
    Ibraheem F; Gaffoor I; Tan Q; Shyu CR; Chopra S
    Molecules; 2015 Jan; 20(2):2388-404. PubMed ID: 25647576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Commercial hybrids and mutant genotypes reveal complex protective roles for inducible terpenoid defenses in maize.
    Christensen SA; Sims J; Vaughan MM; Hunter C; Block A; Willett D; Alborn HT; Huffaker A; Schmelz EA
    J Exp Bot; 2018 Mar; 69(7):1693-1705. PubMed ID: 29361044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection.
    Voitsik AM; Muench S; Deising HB; Voll LM
    BMC Plant Biol; 2013 May; 13():85. PubMed ID: 23718541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selinene Volatiles Are Essential Precursors for Maize Defense Promoting Fungal Pathogen Resistance.
    Ding Y; Huffaker A; Köllner TG; Weckwerth P; Robert CAM; Spencer JL; Lipka AE; Schmelz EA
    Plant Physiol; 2017 Nov; 175(3):1455-1468. PubMed ID: 28931629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola.
    Sanz-Martín JM; Pacheco-Arjona JR; Bello-Rico V; Vargas WA; Monod M; Díaz-Mínguez JM; Thon MR; Sukno SA
    Mol Plant Pathol; 2016 Sep; 17(7):1048-62. PubMed ID: 26619206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize.
    Schmelz EA; Kaplan F; Huffaker A; Dafoe NJ; Vaughan MM; Ni X; Rocca JR; Alborn HT; Teal PE
    Proc Natl Acad Sci U S A; 2011 Mar; 108(13):5455-60. PubMed ID: 21402917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for a diffusible factor that induces susceptibility in the Colletotrichum-maize disease interaction.
    Torres MF; Cuadros DF; Vaillancourt LJ
    Mol Plant Pathol; 2014 Jan; 15(1):80-93. PubMed ID: 24003973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes.
    Richter A; Seidl-Adams I; Köllner TG; Schaff C; Tumlinson JH; Degenhardt J
    Planta; 2015 Jun; 241(6):1351-61. PubMed ID: 25680349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen.
    Huang M; Sanchez-Moreiras AM; Abel C; Sohrabi R; Lee S; Gershenzon J; Tholl D
    New Phytol; 2012 Mar; 193(4):997-1008. PubMed ID: 22187939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola.
    Albarouki E; Deising HB
    Mol Plant Microbe Interact; 2013 Jun; 26(6):695-708. PubMed ID: 23639025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signal signature of aboveground-induced resistance upon belowground herbivory in maize.
    Erb M; Flors V; Karlen D; de Lange E; Planchamp C; D'Alessandro M; Turlings TC; Ton J
    Plant J; 2009 Jul; 59(2):292-302. PubMed ID: 19392694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens.
    Patiño B; Vázquez C; Manning JM; Roncero MIG; Córdoba-Cañero D; Di Pietro A; Martínez-Del-Pozo Á
    Int J Food Microbiol; 2018 Oct; 283():45-51. PubMed ID: 30099994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Root volatile profiles and herbivore preference are mediated by maize domestication, geographic spread, and modern breeding.
    Bernal JS; Helms AM; Fontes-Puebla AA; DeWitt TJ; Kolomiets MV; Grunseich JM
    Planta; 2022 Dec; 257(1):24. PubMed ID: 36562877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A maize line resistant to herbivory constitutively releases (E) -beta-caryophyllene.
    Smith WE; Shivaji R; Williams WP; Luthe DS; Sandoya GV; Smith CL; Sparks DL; Brown AE
    J Econ Entomol; 2012 Feb; 105(1):120-8. PubMed ID: 22420263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Colletotrichum graminicola striatin orthologue Str1 is necessary for anastomosis and is a virulence factor.
    Wang CL; Shim WB; Shaw BD
    Mol Plant Pathol; 2016 Aug; 17(6):931-42. PubMed ID: 26576029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola.
    Tang W; Coughlan S; Crane E; Beatty M; Duvick J
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1240-50. PubMed ID: 17073306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves.
    Behr M; Motyka V; Weihmann F; Malbeck J; Deising HB; Wirsel SG
    Mol Plant Microbe Interact; 2012 Aug; 25(8):1073-82. PubMed ID: 22746825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The hemibiotroph Colletotrichum graminicola locally induces photosynthetically active green islands but globally accelerates senescence on aging maize leaves.
    Behr M; Humbeck K; Hause G; Deising HB; Wirsel SG
    Mol Plant Microbe Interact; 2010 Jul; 23(7):879-92. PubMed ID: 20521951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative transcriptomic analysis indicates genes associated with local and systemic resistance to Colletotrichum graminicola in maize.
    Miranda VJ; Porto WF; Fernandes GDR; Pogue R; Nolasco DO; Araujo ACG; Cota LV; Freitas CG; Dias SC; Franco OL
    Sci Rep; 2017 May; 7(1):2483. PubMed ID: 28559543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of a fadA ortholog in the growth and development of Colletotrichum graminicola in vitro and in planta.
    Venard C; Kulshrestha S; Sweigard J; Nuckles E; Vaillancourt L
    Fungal Genet Biol; 2008 Jun; 45(6):973-83. PubMed ID: 18448365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.