These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 25893863)

  • 21. A litmus-type colorimetric and fluorometric volatile organic compound sensor based on inkjet-printed polydiacetylenes on paper substrates.
    Yoon B; Park IS; Shin H; Park HJ; Lee CW; Kim JM
    Macromol Rapid Commun; 2013 May; 34(9):731-5. PubMed ID: 23417983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of microband glucose biosensors using a screen-printing water-based carbon ink and their application in serum analysis.
    Pemberton RM; Pittson R; Biddle N; Hart JP
    Biosens Bioelectron; 2009 Jan; 24(5):1246-52. PubMed ID: 18778930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inkjet delivery of glucose oxidase.
    Cook CC; Wang T; Derby B
    Chem Commun (Camb); 2010 Aug; 46(30):5452-4. PubMed ID: 20490421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: toward whole blood glucose determination.
    Kong FY; Gu SX; Li WW; Chen TT; Xu Q; Wang W
    Biosens Bioelectron; 2014 Jun; 56():77-82. PubMed ID: 24469540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paper bioassay based on ceria nanoparticles as colorimetric probes.
    Ornatska M; Sharpe E; Andreescu D; Andreescu S
    Anal Chem; 2011 Jun; 83(11):4273-80. PubMed ID: 21524141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible thick-film glucose biosensor: influence of mechanical bending on the performance.
    Chuang MC; Yang YL; Tseng TF; Chou T; Lou SL; Wang J
    Talanta; 2010 Apr; 81(1-2):15-9. PubMed ID: 20188880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inkjet-printed paper-based colorimetric sensor array for the discrimination of volatile primary amines.
    Soga T; Jimbo Y; Suzuki K; Citterio D
    Anal Chem; 2013 Oct; 85(19):8973-8. PubMed ID: 24044503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Tube-Integrated Painted Biosensor for Glucose and Lactate.
    Shi W; Luo X; Cui Y
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29783699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patterned paper sensors printed with long-chain DNA aptamers.
    Carrasquilla C; Little JR; Li Y; Brennan JD
    Chemistry; 2015 May; 21(20):7369-73. PubMed ID: 25820300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry.
    Calabria D; Caliceti C; Zangheri M; Mirasoli M; Simoni P; Roda A
    Biosens Bioelectron; 2017 Aug; 94():124-130. PubMed ID: 28267667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust Single-Molecule Enzyme Nanocapsules for Biosensing with Significantly Improved Biosensor Stability.
    Dhanjai ; Lu X; Wu L; Chen J; Lu Y
    Anal Chem; 2020 Apr; 92(8):5830-5837. PubMed ID: 32202407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A microband lactate biosensor fabricated using a water-based screen-printed carbon ink.
    Rawson FJ; Purcell WM; Xu J; Pemberton RM; Fielden PR; Biddle N; Hart JP
    Talanta; 2009 Jan; 77(3):1149-54. PubMed ID: 19064104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chitin Nanofiber Paper toward Optical (Bio)sensing Applications.
    Naghdi T; Golmohammadi H; Yousefi H; Hosseinifard M; Kostiv U; Horák D; Merkoçi A
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15538-15552. PubMed ID: 32148018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colorimetric paper bioassay for the detection of phenolic compounds.
    Alkasir RS; Ornatska M; Andreescu S
    Anal Chem; 2012 Nov; 84(22):9729-37. PubMed ID: 23113670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inkjet printing methodologies for drug screening.
    Arrabito G; Pignataro B
    Anal Chem; 2010 Apr; 82(8):3104-7. PubMed ID: 20329750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication.
    Sameenoi Y; Nongkai PN; Nouanthavong S; Henry CS; Nacapricha D
    Analyst; 2014 Dec; 139(24):6580-8. PubMed ID: 25360590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.
    Mohammadi S; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Analyst; 2015 Oct; 140(19):6493-9. PubMed ID: 26207925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A paper-based biosensor for visual detection of glucose-6-phosphate dehydrogenase from whole blood.
    White D; Keramane M; Capretta A; Brennan JD
    Analyst; 2020 Mar; 145(5):1817-1824. PubMed ID: 31956872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inkjet-printed microfluidic multianalyte chemical sensing paper.
    Abe K; Suzuki K; Citterio D
    Anal Chem; 2008 Sep; 80(18):6928-34. PubMed ID: 18698798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks.
    Hossain SM; Luckham RE; Smith AM; Lebert JM; Davies LM; Pelton RH; Filipe CD; Brennan JD
    Anal Chem; 2009 Jul; 81(13):5474-83. PubMed ID: 19492815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.