These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25894020)

  • 1. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.
    Colvin RA; Lai B; Holmes WR; Lee D
    Metallomics; 2015 Jul; 7(7):1111-23. PubMed ID: 25894020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing Metal Content and Intracellular Distribution in Primary Hippocampal Neurons with Synchrotron X-Ray Fluorescence.
    Colvin RA; Jin Q; Lai B; Kiedrowski L
    PLoS One; 2016; 11(7):e0159582. PubMed ID: 27434052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitation and localization of intracellular redox active metals by X-ray fluorescence microscopy in cortical neurons derived from APP and APLP2 knockout tissue.
    Ciccotosto GD; James SA; Altissimo M; Paterson D; Vogt S; Lai B; de Jonge MD; Howard DL; Bush AI; Cappai R
    Metallomics; 2014 Oct; 6(10):1894-904. PubMed ID: 25098278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells.
    Garrido-Gil P; Rodriguez-Pallares J; Dominguez-Meijide A; Guerra MJ; Labandeira-Garcia JL
    Exp Neurol; 2013 Dec; 250():384-96. PubMed ID: 24184051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of cellular metallic elements in single neurons of human brain tissues.
    Ishihara R; Ide-Ektessabi A; Ikeda K; Mizuno Y; Fujisawa S; Takeuchi T; Ohta T
    Neuroreport; 2002 Oct; 13(14):1817-20. PubMed ID: 12395131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling the iron, copper and zinc content in primary neuron and astrocyte cultures by rapid online quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry.
    Hare DJ; Grubman A; Ryan TM; Lothian A; Liddell JR; Grimm R; Matsuda T; Doble PA; Cherny RA; Bush AI; White AR; Masters CL; Roberts BR
    Metallomics; 2013 Dec; 5(12):1656-62. PubMed ID: 24132241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron storage within dopamine neurovesicles revealed by chemical nano-imaging.
    Ortega R; Cloetens P; Devès G; Carmona A; Bohic S
    PLoS One; 2007 Sep; 2(9):e925. PubMed ID: 17895967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging.
    Zecca L; Stroppolo A; Gatti A; Tampellini D; Toscani M; Gallorini M; Giaveri G; Arosio P; Santambrogio P; Fariello RG; Karatekin E; Kleinman MH; Turro N; Hornykiewicz O; Zucca FA
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9843-8. PubMed ID: 15210960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence detection of redox-sensitive metals in neuronal culture: focus on iron and zinc.
    Reynolds IJ
    Ann N Y Acad Sci; 2004 Mar; 1012():27-36. PubMed ID: 15105253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration.
    Yokel RA
    J Alzheimers Dis; 2006 Nov; 10(2-3):223-53. PubMed ID: 17119290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal dyshomeostasis and oxidative stress in Alzheimer's disease.
    Greenough MA; Camakaris J; Bush AI
    Neurochem Int; 2013 Apr; 62(5):540-55. PubMed ID: 22982299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterising the spatial and temporal brain metal profile in a mouse model of tauopathy.
    Rao SS; Lago L; Gonzalez de Vega R; Bray L; Hare DJ; Clases D; Doble PA; Adlard PA
    Metallomics; 2020 Feb; 12(2):301-313. PubMed ID: 31904058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric distribution of metals in the Xenopus laevis oocyte: a synchrotron X-ray fluorescence microprobe study.
    Popescu BF; Belak ZR; Ignatyev K; Ovsenek N; Nichol H
    Biochem Cell Biol; 2007 Oct; 85(5):537-42. PubMed ID: 17901895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson's disease brain.
    Genoud S; Roberts BR; Gunn AP; Halliday GM; Lewis SJG; Ball HJ; Hare DJ; Double KL
    Metallomics; 2017 Oct; 9(10):1447-1455. PubMed ID: 28944802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron, copper, and zinc distribution of the cerebellum.
    Popescu BF; Robinson CA; Rajput A; Rajput AH; Harder SL; Nichol H
    Cerebellum; 2009 Jun; 8(2):74-9. PubMed ID: 19139969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency.
    Erikson KM; Syversen T; Steinnes E; Aschner M
    J Nutr Biochem; 2004 Jun; 15(6):335-41. PubMed ID: 15157939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-lethal levels of amyloid β-peptide oligomers decrease non-transferrin-bound iron uptake and do not potentiate iron toxicity in primary hippocampal neurons.
    SanMartín CD; Paula-Lima AC; Hidalgo C; Núñez MT
    Biometals; 2012 Aug; 25(4):805-13. PubMed ID: 22526560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trace metal regulation of neuronal apoptosis: from genes to behavior.
    Levenson CW
    Physiol Behav; 2005 Oct; 86(3):399-406. PubMed ID: 16125208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into Zn2+ homeostasis in neurons from experimental and modeling studies.
    Colvin RA; Bush AI; Volitakis I; Fontaine CP; Thomas D; Kikuchi K; Holmes WR
    Am J Physiol Cell Physiol; 2008 Mar; 294(3):C726-42. PubMed ID: 18184873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.