BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 25894117)

  • 1. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles.
    Reisch A; Runser A; Arntz Y; Mély Y; Klymchenko AS
    ACS Nano; 2015 May; 9(5):5104-16. PubMed ID: 25894117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles.
    Niu X; Zou W; Liu C; Zhang N; Fu C
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1375-83. PubMed ID: 19832638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices.
    Lepeltier E; Bourgaux C; Couvreur P
    Adv Drug Deliv Rev; 2014 May; 71():86-97. PubMed ID: 24384372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability-limit "Ouzo region" boundaries for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation.
    Beck-Broichsitter M
    Int J Pharm; 2016 Sep; 511(1):262-266. PubMed ID: 27418569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance.
    Liu Y; Pan J; Feng SS
    Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content.
    Budhian A; Siegel SJ; Winey KI
    Int J Pharm; 2007 May; 336(2):367-75. PubMed ID: 17207944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs.
    Dong Y; Feng SS
    Biomaterials; 2005 Oct; 26(30):6068-76. PubMed ID: 15894372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethylene glycol as an alternative polymer solvent for nanoparticle preparation.
    Ali ME; Lamprecht A
    Int J Pharm; 2013 Nov; 456(1):135-42. PubMed ID: 23958752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation.
    Legrand P; Lesieur S; Bochot A; Gref R; Raatjes W; Barratt G; Vauthier C
    Int J Pharm; 2007 Nov; 344(1-2):33-43. PubMed ID: 17616282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles obtained by confined impinging jet mixer: poly(lactide-co-glycolide) vs. Poly-ε-caprolactone.
    Turino LN; Stella B; Dosio F; Luna JA; Barresi AA
    Drug Dev Ind Pharm; 2018 Jun; 44(6):934-941. PubMed ID: 29300113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of fluorescent polymer nanoparticles by covalent modification-nanoprecipitation of amine-reactive ester polymers.
    Lee Y; Hanif S; Theato P; Zentel R; Lim J; Char K
    Macromol Rapid Commun; 2015 Jun; 36(11):1089-95. PubMed ID: 25761204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thermo-sensitive NIPA-based co-polymer and monosize polycationic nanoparticle for non-viral gene transfer to smooth muscle cells.
    Laçin NT; Utkan GG; Kutsal T; Pişkin E
    J Biomater Sci Polym Ed; 2012; 23(5):577-92. PubMed ID: 21310109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles via nanoprecipitation process.
    Minost A; Delaveau J; Bolzinger MA; Fessi H; Elaissari A
    Recent Pat Drug Deliv Formul; 2012 Dec; 6(3):250-8. PubMed ID: 22845041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-like particles through nanoprecipitation of mixtures of polymers of opposite charge.
    Combes A; Tang KN; Klymchenko AS; Reisch A
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1786-1795. PubMed ID: 34600342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new formulation of poly(MAOTIB) nanoparticles as an efficient contrast agent for in vivo X-ray imaging.
    Wallyn J; Anton N; Serra CA; Bouquey M; Collot M; Anton H; Weickert JL; Messaddeq N; Vandamme TF
    Acta Biomater; 2018 Jan; 66():200-212. PubMed ID: 29129788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and optimization of NSAID loaded nanoparticles.
    Sashmal S; Mukherjee S; Ray S; Thakur RS; Ghosh LK; Gupta BK
    Pak J Pharm Sci; 2007 Apr; 20(2):157-62. PubMed ID: 17416573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(vinyl benzoate) nanoparticles for molecular delivery: Studies on their preparation and in vitro properties.
    Labruère R; Sicard R; Cormier R; Turos E; West L
    J Control Release; 2010 Dec; 148(2):234-40. PubMed ID: 20728487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of nanoparticles of glibenclamide by solvent displacement method.
    Dora CP; Singh SK; Kumar S; Datusalia AK; Deep A
    Acta Pol Pharm; 2010; 67(3):283-90. PubMed ID: 20524431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled biodegradable amphiphilic PEG-PCL-lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery.
    Endres TK; Beck-Broichsitter M; Samsonova O; Renette T; Kissel TH
    Biomaterials; 2011 Oct; 32(30):7721-31. PubMed ID: 21782238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling Size and Fluorescence of Dye-Loaded Polymer Nanoparticles through Polymer Design.
    Rosiuk V; Runser A; Klymchenko A; Reisch A
    Langmuir; 2019 May; 35(21):7009-7017. PubMed ID: 31081637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.