BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 25894690)

  • 1. A kinome-targeted RNAi-based screen links FGF signaling to H2AX phosphorylation in response to radiation.
    Benzina S; Pitaval A; Lemercier C; Lustremant C; Frouin V; Wu N; Papine A; Soussaline F; Romeo PH; Gidrol X
    Cell Mol Life Sci; 2015 Sep; 72(18):3559-73. PubMed ID: 25894690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-PKcs plays a dominant role in the regulation of H2AX phosphorylation in response to DNA damage and cell cycle progression.
    An J; Huang YC; Xu QZ; Zhou LJ; Shang ZF; Huang B; Wang Y; Liu XD; Wu DC; Zhou PK
    BMC Mol Biol; 2010 Mar; 11():18. PubMed ID: 20205745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK.
    Meyer B; Voss KO; Tobias F; Jakob B; Durante M; Taucher-Scholz G
    Nucleic Acids Res; 2013 Jul; 41(12):6109-18. PubMed ID: 23620287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation.
    Baritaud M; Cabon L; Delavallée L; Galán-Malo P; Gilles ME; Brunelle-Navas MN; Susin SA
    Cell Death Dis; 2012 Sep; 3(9):e390. PubMed ID: 22972376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone H2AX participates the DNA damage-induced ATM activation through interaction with NBS1.
    Kobayashi J; Tauchi H; Chen B; Burma S; Tashiro S; Matsuura S; Tanimoto K; Chen DJ; Komatsu K
    Biochem Biophys Res Commun; 2009 Mar; 380(4):752-7. PubMed ID: 19338747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex H2AX phosphorylation patterns by multiple kinases including ATM and DNA-PK in human cells exposed to ionizing radiation and treated with kinase inhibitors.
    Wang H; Wang M; Wang H; Böcker W; Iliakis G
    J Cell Physiol; 2005 Feb; 202(2):492-502. PubMed ID: 15389585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells.
    Mukherjee B; Kessinger C; Kobayashi J; Chen BP; Chen DJ; Chatterjee A; Burma S
    DNA Repair (Amst); 2006 May; 5(5):575-90. PubMed ID: 16567133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BCLAF1 is a radiation-induced H2AX-interacting partner involved in γH2AX-mediated regulation of apoptosis and DNA repair.
    Lee YY; Yu YB; Gunawardena HP; Xie L; Chen X
    Cell Death Dis; 2012 Jul; 3(7):e359. PubMed ID: 22833098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MDC1 is a mediator of the mammalian DNA damage checkpoint.
    Stewart GS; Wang B; Bignell CR; Taylor AM; Elledge SJ
    Nature; 2003 Feb; 421(6926):961-6. PubMed ID: 12607005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks.
    Nakamura AJ; Rao VA; Pommier Y; Bonner WM
    Cell Cycle; 2010 Jan; 9(2):389-97. PubMed ID: 20046100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATM activation accompanies histone H2AX phosphorylation in A549 cells upon exposure to tobacco smoke.
    Tanaka T; Huang X; Jorgensen E; Gietl D; Traganos F; Darzynkiewicz Z; Albino AP
    BMC Cell Biol; 2007 Jun; 8():26. PubMed ID: 17594478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair.
    Chowdhury D; Keogh MC; Ishii H; Peterson CL; Buratowski S; Lieberman J
    Mol Cell; 2005 Dec; 20(5):801-9. PubMed ID: 16310392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand break repair.
    Kari V; Shchebet A; Neumann H; Johnsen SA
    Cell Cycle; 2011 Oct; 10(20):3495-504. PubMed ID: 22031019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks.
    Bañuelos CA; Banáth JP; MacPhail SH; Zhao J; Eaves CA; O'Connor MD; Lansdorp PM; Olive PL
    DNA Repair (Amst); 2008 Sep; 7(9):1471-83. PubMed ID: 18602349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of heterochromatin on DSB repair.
    Goodarzi AA; Noon AT; Jeggo PA
    Biochem Soc Trans; 2009 Jun; 37(Pt 3):569-76. PubMed ID: 19442252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [gamma H2AX in the recognition of DNA double-strand breaks].
    Podhorecka M
    Postepy Hig Med Dosw (Online); 2009 Feb; 63():92-8. PubMed ID: 19252467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATM is the predominant kinase involved in the phosphorylation of histone H2AX after heating.
    Takahashi A; Mori E; Su X; Nakagawa Y; Okamoto N; Uemura H; Kondo N; Noda T; Toki A; Ejima Y; Chen DJ; Ohnishi K; Ohnishi T
    J Radiat Res; 2010; 51(4):417-22. PubMed ID: 20448412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention.
    Lukas C; Melander F; Stucki M; Falck J; Bekker-Jensen S; Goldberg M; Lerenthal Y; Jackson SP; Bartek J; Lukas J
    EMBO J; 2004 Jul; 23(13):2674-83. PubMed ID: 15201865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-specific DNA-PK-dependent H2AX phosphorylation and gamma-H2AX elimination after X-irradiation in vivo.
    Koike M; Sugasawa J; Yasuda M; Koike A
    Biochem Biophys Res Commun; 2008 Nov; 376(1):52-5. PubMed ID: 18755145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-individual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation.
    Wilson PF; Nham PB; Urbin SS; Hinz JM; Jones IM; Thompson LH
    Mutat Res; 2010 Jan; 683(1-2):91-7. PubMed ID: 19896956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.