BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25894871)

  • 1. Oligonucleotide therapies: the future of amyotrophic lateral sclerosis treatment?
    Aoki Y; Douglas AG; Wood MJ
    Neurodegener Dis Manag; 2015; 5(2):93-5. PubMed ID: 25894871
    [No Abstract]   [Full Text] [Related]  

  • 2. C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function?
    Mizielinska S; Isaacs AM
    Curr Opin Neurol; 2014 Oct; 27(5):515-23. PubMed ID: 25188012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyotrophic lateral sclerosis and gene therapy.
    Miller TM; Smith RA; Cleveland DW
    Nat Clin Pract Neurol; 2006 Sep; 2(9):462-3. PubMed ID: 16932606
    [No Abstract]   [Full Text] [Related]  

  • 4. Tofersen: First Approval.
    Blair HA
    Drugs; 2023 Jul; 83(11):1039-1043. PubMed ID: 37316681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Mutations in SOD1 and C9orf72 Genes on Autophagy in Lymphomonocytes in Myotrophic Lateral Sclerosis.
    Kochergin IA; Shpilyukova YA; Lysogorskaia EV; Abramycheva NY; Zakharova MN; Illarioshkin SN
    Bull Exp Biol Med; 2019 Sep; 167(5):667-670. PubMed ID: 31625064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental therapies hold promise for treating amyotrophic lateral sclerosis.
    Friedrich MJ
    JAMA; 2005 Mar; 293(9):1048-9. PubMed ID: 15741517
    [No Abstract]   [Full Text] [Related]  

  • 7. [Gene-specific treatment approaches in amyotrophic lateral sclerosis in the present and future].
    Brenner D; Freischmidt A; Ludolph AC; Weishaupt JH
    Nervenarzt; 2020 Apr; 91(4):287-293. PubMed ID: 32076756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An RNAi strategy for treatment of amyotrophic lateral sclerosis caused by mutant Cu,Zn superoxide dismutase.
    Xia XG; Zhou H; Zhou S; Yu Y; Wu R; Xu Z
    J Neurochem; 2005 Jan; 92(2):362-7. PubMed ID: 15663483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72.
    Chiò A; Borghero G; Restagno G; Mora G; Drepper C; Traynor BJ; Sendtner M; Brunetti M; Ossola I; Calvo A; Pugliatti M; Sotgiu MA; Murru MR; Marrosu MG; Marrosu F; Marinou K; Mandrioli J; Sola P; Caponnetto C; Mancardi G; Mandich P; La Bella V; Spataro R; Conte A; Monsurrò MR; Tedeschi G; Pisano F; Bartolomei I; Salvi F; Lauria Pinter G; Simone I; Logroscino G; Gambardella A; Quattrone A; Lunetta C; Volanti P; Zollino M; Penco S; Battistini S; ; Renton AE; Majounie E; Abramzon Y; Conforti FL; Giannini F; Corbo M; Sabatelli M
    Brain; 2012 Mar; 135(Pt 3):784-93. PubMed ID: 22366794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel behavioural characteristics of the superoxide dismutase 1 G93A (SOD1
    Kreilaus F; Guerra S; Masanetz R; Menne V; Yerbury J; Karl T
    Genes Brain Behav; 2020 Feb; 19(2):e12604. PubMed ID: 31412164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined fulminant frontotemporal dementia and amyotrophic lateral sclerosis associated with an I113T SOD1 mutation.
    Katz JS; Katzberg HD; Woolley SC; Marklund SL; Andersen PM
    Amyotroph Lateral Scler; 2012 Oct; 13(6):567-9. PubMed ID: 22670877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of LNA Gapmer Oligonucleotide-Based Therapy for ALS/FTD Caused by the C9orf72 Repeat Expansion.
    Sathyaprakash C; Manzano R; Varela MA; Hashimoto Y; Wood MJA; Talbot K; Aoki Y
    Methods Mol Biol; 2020; 2176():185-208. PubMed ID: 32865792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Genetic architecture of amyotrophic lateral sclerosis and frontotemporal dementia : Overlap and differences].
    Synofzik M; Otto M; Ludolph A; Weishaupt JH
    Nervenarzt; 2017 Jul; 88(7):728-735. PubMed ID: 28573364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA interference and amyotrophic lateral sclerosis.
    Rizvanov AA; Gulluoglu S; Yalvaç ME; Palotás A; Islamov RR
    Curr Drug Metab; 2011 Sep; 12(7):679-83. PubMed ID: 21740381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNAi therapy: dominant disease gene gets silenced.
    Xu Z; Xia XG
    Gene Ther; 2005 Aug; 12(15):1159-60. PubMed ID: 15858609
    [No Abstract]   [Full Text] [Related]  

  • 16. Current developments in gene therapy for amyotrophic lateral sclerosis.
    Scarrott JM; Herranz-Martín S; Alrafiah AR; Shaw PJ; Azzouz M
    Expert Opin Biol Ther; 2015 Jul; 15(7):935-47. PubMed ID: 25959569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is SOD1 loss of function involved in amyotrophic lateral sclerosis?
    Saccon RA; Bunton-Stasyshyn RK; Fisher EM; Fratta P
    Brain; 2013 Aug; 136(Pt 8):2342-58. PubMed ID: 23687121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis.
    Ding H; Schwarz DS; Keene A; Affar el B; Fenton L; Xia X; Shi Y; Zamore PD; Xu Z
    Aging Cell; 2003 Aug; 2(4):209-17. PubMed ID: 12934714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of amyotrophic lateral sclerosis in the Slovenian population.
    Vrabec K; Koritnik B; Leonardis L; Dolenc-Grošelj L; Zidar J; Smith B; Vance C; Shaw C; Rogelj B; Glavač D; Ravnik-Glavač M
    Neurobiol Aging; 2015 Mar; 36(3):1601.e17-20. PubMed ID: 25585530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaches to Gene Modulation Therapy for ALS.
    Meijboom KE; Brown RH
    Neurotherapeutics; 2022 Jul; 19(4):1159-1179. PubMed ID: 36068427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.