BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 25894945)

  • 1. Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis.
    Woo CM; Iavarone AT; Spiciarich DR; Palaniappan KK; Bertozzi CR
    Nat Methods; 2015 Jun; 12(6):561-7. PubMed ID: 25894945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotope Targeted Glycoproteomics (IsoTaG) to Characterize Intact, Metabolically Labeled Glycopeptides from Complex Proteomes.
    Woo CM; Bertozzi CR
    Curr Protoc Chem Biol; 2016 Mar; 8(1):59-82. PubMed ID: 26995354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of IsoTaG, a Chemical Glycoproteomics Technique for Profiling Intact N- and O-Glycopeptides from Whole Cell Proteomes.
    Woo CM; Felix A; Byrd WE; Zuegel DK; Ishihara M; Azadi P; Iavarone AT; Pitteri SJ; Bertozzi CR
    J Proteome Res; 2017 Apr; 16(4):1706-1718. PubMed ID: 28244757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotope-targeted glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an Orbitrap Fusion Tribrid using azido and alkynyl sugars.
    Woo CM; Felix A; Zhang L; Elias JE; Bertozzi CR
    Anal Bioanal Chem; 2017 Jan; 409(2):579-588. PubMed ID: 27695962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Recent advances in glycopeptide enrichment and mass spectrometry data interpretation approaches for glycoproteomics analyses].
    Liu L; Qin H; Ye M
    Se Pu; 2021 Oct; 39(10):1045-1054. PubMed ID: 34505426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site- and structure-specific quantitative N-glycoproteomics study of differential N-glycosylation in MCF-7 cancer cells.
    Xue B; Xiao K; Wang Y; Tian Z
    J Proteomics; 2020 Feb; 212():103594. PubMed ID: 31759178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification.
    Liu MQ; Zeng WF; Fang P; Cao WQ; Liu C; Yan GQ; Zhang Y; Peng C; Wu JQ; Zhang XJ; Tu HJ; Chi H; Sun RX; Cao Y; Dong MQ; Jiang BY; Huang JM; Shen HL; Wong CCL; He SM; Yang PY
    Nat Commun; 2017 Sep; 8(1):438. PubMed ID: 28874712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-Transfer/Higher-Energy Collision Dissociation (EThcD)-Enabled Intact Glycopeptide/Glycoproteome Characterization.
    Yu Q; Wang B; Chen Z; Urabe G; Glover MS; Shi X; Guo LW; Kent KC; Li L
    J Am Soc Mass Spectrom; 2017 Sep; 28(9):1751-1764. PubMed ID: 28695533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site- and structure-specific characterization of the human urinary N-glycoproteome with site-determining and structure-diagnostic product ions.
    Shen Y; Xiao K; Tian Z
    Rapid Commun Mass Spectrom; 2021 Jan; 35(1):e8952. PubMed ID: 32965048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome.
    Thaysen-Andersen M; Packer NH
    Biochim Biophys Acta; 2014 Sep; 1844(9):1437-52. PubMed ID: 24830338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive, Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis.
    Liu G; Cheng K; Lo CY; Li J; Qu J; Neelamegham S
    Mol Cell Proteomics; 2017 Nov; 16(11):2032-2047. PubMed ID: 28887379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycoproteomics based on tandem mass spectrometry of glycopeptides.
    Wuhrer M; Catalina MI; Deelder AM; Hokke CH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):115-28. PubMed ID: 17049937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative N-glycoproteomics using stable isotopic diethyl labeling.
    Wang Y; Xiao K; Tian Z
    Talanta; 2020 Nov; 219():121359. PubMed ID: 32887082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards structure-focused glycoproteomics.
    Chernykh A; Kawahara R; Thaysen-Andersen M
    Biochem Soc Trans; 2021 Feb; 49(1):161-186. PubMed ID: 33439247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmark of site- and structure-specific quantitative tissue N-glycoproteomics for discovery of potential N-glycoprotein markers: a case study of pancreatic cancer.
    Lu H; Xiao K; Tian Z
    Glycoconj J; 2021 Apr; 38(2):213-231. PubMed ID: 33835347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced mass spectrometric mapping of the human GalNAc-type O-glycoproteome with SimpleCells.
    Vakhrushev SY; Steentoft C; Vester-Christensen MB; Bennett EP; Clausen H; Levery SB
    Mol Cell Proteomics; 2013 Apr; 12(4):932-44. PubMed ID: 23399548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD.
    Halim A; Nilsson J; Rüetschi U; Hesse C; Larson G
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.013649. PubMed ID: 22171320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O-Glycopeptide Truncation Strategy for Heterogeneous O-GalNAc Glycoproteomics Characterization.
    Liu L; Zhu H; Liu L; You X; Mao J; Wang Y; Liu X; Qin H; Dong M; Ye M
    Anal Chem; 2023 Jul; 95(26):10017-10024. PubMed ID: 37345258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPSeeker Enables Quantitative Structural N-Glycoproteomics for Site- and Structure-Specific Characterization of Differentially Expressed N-Glycosylation in Hepatocellular Carcinoma.
    Xiao K; Tian Z
    J Proteome Res; 2019 Jul; 18(7):2885-2895. PubMed ID: 31117584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for Proteome-Wide Quantification of Glycosylation Macro- and Micro-Heterogeneity.
    Fang P; Ji Y; Oellerich T; Urlaub H; Pan KT
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.