BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25895032)

  • 1. Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth.
    Zhu YP; Wan FN; Shen YJ; Wang HK; Zhang GM; Ye DW
    Oncotarget; 2015 Jun; 6(16):14488-96. PubMed ID: 25895032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipocalin 2 over-expression facilitates progress of castration-resistant prostate cancer via improving androgen receptor transcriptional activity.
    Ding G; Wang J; Feng C; Jiang H; Xu J; Ding Q
    Oncotarget; 2016 Sep; 7(39):64309-64317. PubMed ID: 27602760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upregulated KDM4B promotes prostate cancer cell proliferation by activating autophagy.
    Sha J; Han Q; Chi C; Zhu Y; Pan J; Dong B; Huang Y; Xia W; Xue W
    J Cell Physiol; 2020 Mar; 235(3):2129-2138. PubMed ID: 31468537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy.
    Rajan P; Sudbery IM; Villasevil ME; Mui E; Fleming J; Davis M; Ahmad I; Edwards J; Sansom OJ; Sims D; Ponting CP; Heger A; McMenemin RM; Pedley ID; Leung HY
    Eur Urol; 2014 Jul; 66(1):32-9. PubMed ID: 24054872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PDLIM2 suppression efficiently reduces tumor growth and invasiveness of human castration-resistant prostate cancer-like cells.
    Kang M; Lee KH; Lee HS; Park YH; Jeong CW; Ku JH; Kim HH; Kwak C
    Prostate; 2016 Feb; 76(3):273-85. PubMed ID: 26499308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1.
    Lin HP; Lin CY; Huo C; Hsiao PH; Su LC; Jiang SS; Chan TM; Chang CH; Chen LT; Kung HJ; Wang HD; Chuu CP
    Oncotarget; 2015 Mar; 6(9):6684-707. PubMed ID: 25788262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis.
    Hagberg Thulin M; Nilsson ME; Thulin P; Céraline J; Ohlsson C; Damber JE; Welén K
    Mol Cell Endocrinol; 2016 Feb; 422():182-191. PubMed ID: 26586211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TAK-441, a novel investigational smoothened antagonist, delays castration-resistant progression in prostate cancer by disrupting paracrine hedgehog signaling.
    Ibuki N; Ghaffari M; Pandey M; Iu I; Fazli L; Kashiwagi M; Tojo H; Nakanishi O; Gleave ME; Cox ME
    Int J Cancer; 2013 Oct; 133(8):1955-66. PubMed ID: 23564295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. USP54 is a potential therapeutic target in castration-resistant prostate cancer.
    Zhou C; Zhang X; Ma H; Zhou Y; Meng Y; Chen C; Shi G; Yu W; Zhang J
    BMC Urol; 2024 Feb; 24(1):32. PubMed ID: 38321455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Y-box binding protein-1 promotes castration-resistant prostate cancer growth via androgen receptor expression.
    Shiota M; Takeuchi A; Song Y; Yokomizo A; Kashiwagi E; Uchiumi T; Kuroiwa K; Tatsugami K; Fujimoto N; Oda Y; Naito S
    Endocr Relat Cancer; 2011 Aug; 18(4):505-17. PubMed ID: 21652770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) levels are associated with neuroendocrine differentiation in castration resistant prostate cancer.
    Gong Y; Chippada-Venkata UD; Galsky MD; Huang J; Oh WK
    Prostate; 2015 May; 75(6):616-27. PubMed ID: 25560638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model.
    Terada N; Shimizu Y; Kamba T; Inoue T; Maeno A; Kobayashi T; Nakamura E; Kamoto T; Kanaji T; Maruyama T; Mikami Y; Toda Y; Matsuoka T; Okuno Y; Tsujimoto G; Narumiya S; Ogawa O
    Cancer Res; 2010 Feb; 70(4):1606-15. PubMed ID: 20145136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upregulation of miR-3195, miR-3687 and miR-4417 is associated with castration-resistant prostate cancer.
    Rönnau CGH; Fussek S; Smit FP; Aalders TW; van Hooij O; Pinto PMC; Burchardt M; Schalken JA; Verhaegh GW
    World J Urol; 2021 Oct; 39(10):3789-3797. PubMed ID: 33990872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PRKAR2B promotes prostate cancer metastasis by activating Wnt/β-catenin and inducing epithelial-mesenchymal transition.
    Sha J; Han Q; Chi C; Zhu Y; Pan J; Dong B; Huang Y; Xia W; Xue W
    J Cell Biochem; 2018 Sep; 119(9):7319-7327. PubMed ID: 29761841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [(14)C]Fluciclovine (alias anti-[(14)C]FACBC) uptake and ASCT2 expression in castration-resistant prostate cancer cells.
    Ono M; Oka S; Okudaira H; Nakanishi T; Mizokami A; Kobayashi M; Schuster DM; Goodman MM; Shirakami Y; Kawai K
    Nucl Med Biol; 2015 Nov; 42(11):887-92. PubMed ID: 26278491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.
    Fokidis HB; Yieng Chin M; Ho VW; Adomat HH; Soma KK; Fazli L; Nip KM; Cox M; Krystal G; Zoubeidi A; Tomlinson Guns ES
    J Steroid Biochem Mol Biol; 2015 Jun; 150():35-45. PubMed ID: 25797030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer.
    Ren S; Liu Y; Xu W; Sun Y; Lu J; Wang F; Wei M; Shen J; Hou J; Gao X; Xu C; Huang J; Zhao Y; Sun Y
    J Urol; 2013 Dec; 190(6):2278-87. PubMed ID: 23845456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolic role of PFKFB4 in androgen-independent growth in vitro and PFKFB4 expression in human prostate cancer tissue.
    Li X; Chen Z; Li Z; Huang G; Lin J; Wei Q; Liang J; Li W
    BMC Urol; 2020 Jun; 20(1):61. PubMed ID: 32487245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-663 induces castration-resistant prostate cancer transformation and predicts clinical recurrence.
    Jiao L; Deng Z; Xu C; Yu Y; Li Y; Yang C; Chen J; Liu Z; Huang G; Li LC; Sun Y
    J Cell Physiol; 2014 Jul; 229(7):834-44. PubMed ID: 24243035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of TXNDC5 in castration-resistant prostate cancer-involvement of androgen receptor signaling pathway.
    Wang L; Song G; Chang X; Tan W; Pan J; Zhu X; Liu Z; Qi M; Yu J; Han B
    Oncogene; 2015 Sep; 34(36):4735-45. PubMed ID: 25500540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.