These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25895468)

  • 1. [Imaging of diabetic osteopathy].
    Patsch J; Pietschmann P; Schueller-Weidekamm C
    Radiologe; 2015 Apr; 55(4):329-36. PubMed ID: 25895468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiology of Osteoporosis.
    Link TM
    Can Assoc Radiol J; 2016 Feb; 67(1):28-40. PubMed ID: 26105503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures.
    Patsch JM; Li X; Baum T; Yap SP; Karampinos DC; Schwartz AV; Link TM
    J Bone Miner Res; 2013 Aug; 28(8):1721-8. PubMed ID: 23558967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoporosis imaging: state of the art and advanced imaging.
    Link TM
    Radiology; 2012 Apr; 263(1):3-17. PubMed ID: 22438439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative assessment of bone mineral measurements using dual X-ray absorptiometry and peripheral quantitative computed tomography.
    Formica CA; Nieves JW; Cosman F; Garrett P; Lindsay R
    Osteoporos Int; 1998; 8(5):460-7. PubMed ID: 9850355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA).
    Engelke K; Libanati C; Liu Y; Wang H; Austin M; Fuerst T; Stampa B; Timm W; Genant HK
    Bone; 2009 Jul; 45(1):110-8. PubMed ID: 19345291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of menopause and metabolic disease on trabecular and cortical bone assessed by peripheral quantitative computed tomography (pQCT).
    Tsurusaki K; Ito M; Hayashi K
    Br J Radiol; 2000 Jan; 73(865):14-22. PubMed ID: 10721315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fracture risk assessment in diabetes mellitus.
    Chen W; Mao M; Fang J; Xie Y; Rui Y
    Front Endocrinol (Lausanne); 2022; 13():961761. PubMed ID: 36120431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Update on Imaging-Based Measurement of Bone Mineral Density and Quality.
    Link TM; Kazakia G
    Curr Rheumatol Rep; 2020 Apr; 22(5):13. PubMed ID: 32270332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical imaging of bone microarchitecture with HR-pQCT.
    Nishiyama KK; Shane E
    Curr Osteoporos Rep; 2013 Jun; 11(2):147-55. PubMed ID: 23504496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in imaging approaches to fracture risk evaluation.
    Manhard MK; Nyman JS; Does MD
    Transl Res; 2017 Mar; 181():1-14. PubMed ID: 27816505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone imaging and chronic kidney disease: will high-resolution peripheral tomography improve bone evaluation and therapeutic management?
    Bacchetta J; Boutroy S; Juillard L; Vilayphiou N; Guebre-Egziabher F; Pelletier S; Delmas PD; Fouque D
    J Ren Nutr; 2009 Jan; 19(1):44-9. PubMed ID: 19121770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography.
    Boutroy S; Bouxsein ML; Munoz F; Delmas PD
    J Clin Endocrinol Metab; 2005 Dec; 90(12):6508-15. PubMed ID: 16189253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in osteoporosis imaging.
    Bauer JS; Link TM
    Eur J Radiol; 2009 Sep; 71(3):440-9. PubMed ID: 19651482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Qualitative and quantitative assessment of bone fragility and fracture healing using conventional radiography and advanced imaging technologies--focus on wrist fracture.
    Firoozabadi R; Morshed S; Engelke K; Prevrhal S; Fierlinger A; Miclau T; Genant HK
    J Orthop Trauma; 2008 Sep; 22(8 Suppl):S83-90. PubMed ID: 18753895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetes Mellitus-induced Bone Fragility.
    Kanazawa I; Sugimoto T
    Intern Med; 2018 Oct; 57(19):2773-2785. PubMed ID: 29780142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification.
    Grampp S; Genant HK; Mathur A; Lang P; Jergas M; Takada M; Glüer CC; Lu Y; Chavez M
    J Bone Miner Res; 1997 May; 12(5):697-711. PubMed ID: 9144335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Individual aspects in eldery patients with fragility fractures].
    Fleischhacker E; Gleich J; Hesse E; Bücking B; Liener UC; Neuerburg C
    Radiologe; 2021 Dec; 61(12):1107-1114. PubMed ID: 34767032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utility of dual-energy X-ray absorptiometry, calcaneal quantitative ultrasound, and fracture risk indices (FRAX® and Osteoporosis Risk Assessment Instrument) for the identification of women with distal forearm or hip fractures: A pilot study.
    Esmaeilzadeh S; Cesme F; Oral A; Yaliman A; Sindel D
    Endocr Res; 2016 Aug; 41(3):248-60. PubMed ID: 26864472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study.
    Szulc P; Boutroy S; Vilayphiou N; Chaitou A; Delmas PD; Chapurlat R
    J Bone Miner Res; 2011 Jun; 26(6):1358-67. PubMed ID: 21611974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.